ſ	1	2	3	4	5	6	Τ
Ī							

Cadeira:	ELECTROMAGNETISMO	Época: Normal
Caucii a.		Lpoca. 1 torina

 Ano lectivo:
 2016/2017 (1° Semestre)
 TESTE 1 (2016/11/09)
 Duração:
 1,5 horas

 Nome:
 Número:
 Curso:
 LEET

As questões 1 a 4 devem ser respondidas neste enunciado. Nestas questões, não é necessário apresentar (e não serão cotadas) deduções ou cálculos. As restantes questões devem ser respondidas nas folhas de prova com as deduções e os cálculos relevantes.

Constantes universais que podem ser necessárias para avaliações numéricas:

 $\varepsilon_0 = 8,854 \times 10^{-12} \, \mathrm{F \, m^{-1}}, \, e = 1,602 \times 10^{-19} \, \mathrm{C}, \, \mathrm{massa \, de \, um \, electrão} \, m_e = 9,109 \times 10^{-31} \, \mathrm{kg}.$

1. [2] Qual deverá ser a distância entre as cargas pontuais $q_1 = 26,0 \,\mu\text{C}$ e $q_2 = -47,0 \,\mu\text{C}$ para que a força de interacção electrostática entre elas no vazio tenha uma magnitude de 5,70 N?

Resposta

Res:
$$r = \sqrt{\frac{|q_1||q_2|}{4\pi\varepsilon_0 F}} = \sqrt{\frac{26,0\times10^{-6}\text{ C}\times47,0\times10^{-6}\text{ C}}{4\pi8,854\times10^{-12}\text{ C}^2\text{ N}^{-1}\text{ m}^{-2}5,70\text{ N}}} = 1.39\text{ m}$$

2. [5] As faces de um cubo são designadas por a, b, c, d, e, f. Considere três situações: (1) uma carga pontual q foi colocada no centro do cubo; (2) uma carga pontual -q/2 foi colocada naquele vértice do cubo onde as faces a, b, c se unem; (3) as duas cargas foram colocadas nos mesmos pontos simultaneamente. Determine os fluxos do campo eléctrico através de cada uma das faces do cubo em cada uma das situações e insira os resultados na tabela. Sugestão: utilize a lei de Gauss e raciocínios de simetria.

Situação	Face a	Face b	Face c	Face d	Face e	Face f
(1)						
(2)						
(3)						

Resol:

- (1) Esta carga dá origem ao fluxo q/ε_0 dirigido em todas as direcções, o qual é uniformemente distribuído entre todas as 6 faces.
- (2) O fluxo originado pela carga em todas as direcções é $-q/2\varepsilon_0$. O que entra no cubo é 1/8 do fluxo total, i.e., $-q/16\varepsilon_0$. Este fluxo é uniformemente distribuído entre as 3 faces d, e, f; o fluxo através das faces a, b, c é 0 (estas faces são paralelas ao **E**).
- (3) Usa-se o princípio de sobreposição: a soma (1)+(2). Se as respostas nas alíneas (1) e/ou (2) são incorrectas, aceita-se como certa na alínea (3) a resposta (1) + (2).

Resp:

	Situação	Face a	Face b	Face c	Face d	Face e	Face f
	(1)	$\frac{q}{6\varepsilon_0}$	$\frac{q}{6\varepsilon_0}$	$\frac{q}{6\varepsilon_0}$	$\frac{q}{6\varepsilon_0}$	$\frac{q}{6\varepsilon_0}$	$\frac{q}{6\varepsilon_0}$
•	(2)	0	0	0	$\frac{-q}{48\varepsilon_0}$	$\frac{-q}{48\varepsilon_0}$	$\frac{-q}{48\varepsilon_0}$
	(3)	$\frac{q}{6\varepsilon_0}$	$\frac{q}{6\varepsilon_0}$	$\frac{q}{6\varepsilon_0}$	$\frac{7q}{48\varepsilon_0}$	$\frac{7q}{48\varepsilon_0}$	$\frac{7q}{48\varepsilon_0}$

- 3. [3] Numa região existe um campo eléctrico com a distribuição de potencial $\varphi(x, y, z) = ax^2 + by + cz^2 + d$, onde a, b, c, d são constantes.
 - (a) Quais são as dimensões das constantes a, b, c, d no Sistema Internacional?

Resposta_____

(b) Considerando que as cargas na região em questão estão ausentes e que as constantes a, b, d são do nosso conhecimento, escreva, sem dedução, a fórmula para a constante c.

Resposta___

Avali 1+2

Resp: a)
$$[a] = V/m^2$$
, $[b] = V/m$, $[c] = V/m^2$, $[d] = V$ b) $c = -a$

- 4. [2] Indique qual das seguintes afirmações é incorrecta:
 - (a) A polarização de materiais dieléctricos em campos eléctricos externos acontece devido à orientação de dipolos eléctricos dentro do material na direcção do campo.
 - (b) Num material dieléctrico num campo eléctrico externo existem sempre dipolos eléctricos, permanentes ou induzidos.
 - (c) Constantes dieléctricas (permitividades relativas) dos materiais com dipolos permanentes excedem 1, as dos materiais sem dipolos permanentes são inferiores a 1.
 - (d) Na maioria dos dieléctricos, quer com dipolos permanentes quer sem eles, o módulo do vector de polarização é proporcional ao campo eléctrico externo.
 - (e) O módulo do vector de polarização nos dieléctricos com dipolos permanentes é tanto maior, quanto menor é a temperatura do dieléctrico.

Resposta ___

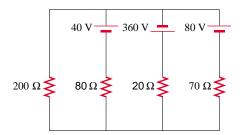
Resp: c.

5. [3] Um campo eléctrico é dado por $\mathbf{E} = \left(\frac{x}{2} + 2y\right) \mathbf{a}_x + 2x\mathbf{a}_y$ (V m⁻¹). Encontre o trabalho efectuado em movimentar uma carga pontual $Q = -20\,\mu\text{C}$ desde o ponto (4,2,0) m até à origem.

Solução: Temos a coordenada y a relacionar-se com a coordenada x: temos uma recta cuja equação é: y = mx + b, como passa pela origem b = 0, quanto ao declive: $m = \frac{y-y_0}{x-x_0} = \frac{2-0}{4-0} = \frac{1}{2}$, assim $y = \frac{1}{2}x$.

$$\begin{split} W_{AB} &= -q_0 \int_A^B \mathbf{E} \cdot d\mathbf{l} = (20 \times 10^{-6}) \int_A^B \left(\left(\frac{x}{2} + 2y \right); 2x; 0 \right) \cdot (dx; dy; 0) = \\ & (20 \times 10^{-6}) \int_A^B \left(\left(\frac{x}{2} + 2y \right) dx + 2x dy \right) = (20 \times 10^{-6}) \left(\int_A^B \left(\frac{x}{2} + 2 \left(\frac{1}{2} x \right) \right) dx + \int_A^B 2 \left(2y \right) dy \right) = \\ &= (20 \times 10^{-6}) \left(\left[\frac{3x^2}{4} \right]_{x=4}^{x=0} + \left[2y^2 \right]_{y=2}^{y=0} \right) = (20 \times 10^{-6}) \left(\left[-12 \right] + \left[-8 \right] \right) = -400 \,\mu\text{J}. \end{split}$$

6. [5] Considere o circuito representado na figura. Calcule o valor da corrente que passa através de cada resistência e a diferença de potencial na resistência de 200Ω .



Solução:

Onde assumi: $\xrightarrow{I_1} \overset{I_2I_3I_4}{\downarrow} \downarrow$

$$\begin{bmatrix} I_1 = I_2 + I_3 + I_4 \\ 40 = -I_1 (200) - I_2 (80) \\ 40 + 360 = -I_2 (80) + I_3 (20) \\ 360 + 80 = -I_4 (70) + I_3 (20) \end{bmatrix} \longrightarrow \begin{bmatrix} I_1 = I_2 + I_3 + I_4 \\ 40 = -(I_2 + I_3 + I_4) (200) - I_2 (80) \\ 400 = -80I_2 + 20I_3 \\ 440 = -70I_4 + 20I_3 \end{bmatrix}$$

$$\begin{bmatrix} I_1 = I_2 + I_3 + I_4 \\ 40 = -200 \left(I_3 + I_4 \right) - 280 I_2 \\ 400 + 80 I_2 = 20 I_3 \\ 440 + 70 I_4 = 20 I_3 \end{bmatrix} \longrightarrow 400 + 80 I_2 = 440 + 70 I_4 \longrightarrow \frac{80 I_2 - 40}{70} = I_4$$

A diferença de potencial na resistência de $200\,\Omega$ é: $V=RI=200\,\Omega\times 1.0\,\mathrm{A}=200\,\mathrm{V}.$