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Continuum Mechanics
Series of exercises 3 - Kinematics of a continuum

1. Let the motion of a body be given in component form as

x1 = X1 + t2X2; x2 = X2 + t2X1; x3 = X3

Determine

(a) The path of the particle originally at X = (1, 2, 1)

(b) The velocity and acceleration components of the same particle when t = 2 s.

2. Invert the motion equations of the preceding exercise to obtain X = X(x, t) and determine the
velocity and acceleration components of the particle at x(1, 0, 1) when t = 2 s.

3. Let the motion equations be given in component form by the Lagrangian description

x1 = X1e
t +X3

(
et − 1

)
, x2 = X3

(
et − e−t

)
+X2, x3 = X3

Determine the Eulerian description of this motion.

4. For the motion of the preceding exercise determine the velocity and acceleration fields, and express
these in both Lagrangian and Eulerian forms.

5. The position at time t, of a particle initially at (X1, X2, X3), is given by the equations:

x1 = X1 + (X1 +X2) t; x2 = X2 + (X1 +X2) t; x3 = X3

(a) Find the velocity at t = 2 for the particle which was at (1, 1, 0) at the reference time.

(b) Find the velocity at t = 2 for the particle which is at the position (1, 1, 0) at t = 2.

6. Let a certain motion of a continuum be given by the component equations,

x1 = X1e
−t; x2 = X2e

t; x3 = X3 +X2

(
e−t − 1

)
and let the temperature field of the body be given by the spatial description,

θ = e−t (x1 − 2x2 + 3x3)

Determine the velocity field in spatial form, and using that, compute the material derivative
Dθ/Dt of the temperature field.

7. Given the motion of a continuum to be

x1 = X1 + ktX2; x2 = X2; x3 = X3

If the temperature field is given by the spatial description

θ = x1 + x2

(a) find the material description of temperature.

(b) obtain the velocity and rate of change of temperature for particular material particles and
express the answer in both a material and a spatial description.
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8. Obtain the material derivative Dθ
Dt
for the motion and temperature field given in the previous

exercise.

9. For superposed material and spatial axes, the displacement vector of a body is given by u =
4X2

1e1+X2X
2
3e2+X1X

2
3e3. Determine the displaced location of the particle originally at (1, 0, 2).

10. Given the displacement field

u1 = k
(
2X1 +X2

2

)
; u2 = k

(
X2
1 −X2

2

)
; u3 = 0; k = 10−4

(a) Find the unit elongation and the change of angle for the two material elements dX1 = dX1e1
and dX2 = dX2e2 that emanate from a particle designated by X = e1 − e2.

(b) Find the deformed position of these two elements dX1 and dX2.

11. A unit cube, with edges parallel to the coordinates axes, is given the displacement field:

u1 = kX1; u2 = u3 = 0; k = 10−4

Find the increase in length of the diagonal AB (that connects the points: A (0, 0, 0) and B (1, 1, 0))
by using

(a) the infinitesimal strain tensor.

(b) geometry.

12. For the velocity field, v = kx22e1, find:

(a) the rate of deformation and spin tensors.

(b) the rate of extensions of a material element dx = (ds)n where n =
(√

2
2

)
(e1 + e2) at

x = 5e1 + 3e2.

13. For the velocity field v =
(

t+k
1+x1

)
e1, find the rates of extension for the following material elements:

dx1 = ds1e1; dx2 =
(
ds2√
2

)
(e1 + e2) at the origin at time t = 1.

14. Given the following velocity field

v1 = k (x2 − 2)2 x3; v2 = −x1x2; v3 = kx1x3

for an incompressible fluid, determine k such that the equation of mass conservation is satisfied.

15. In a spatial description, the density of an incompressible fluid is given by ρ = kx2. Find the
permissible form for the velocity field with v3 = 0, so that the conservation of mass equation is
satisfied.

16. Given the velocity field
v = x1te1 + x2te2

determine how the fluid density varies with time, if in a spatial description it is a function of time
only.

17. The state of strain throughout a continuum is specified by

[
Ê
]
=

 X2
1 X2

2 X1X3

X2
2 X3 X2

3

X1X3 X2
3 5


Are the compatibility equations for strain satisfied?
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18. The strain components are given by

E11 =
1

α
f (X2, X3) ; E22 = E33 = −

ν

α
f (X2, X3) ; E12 = E13 = E23 = 0

Show that for the strains to be compatible f (X2, X3) must be linear.

Solutions:
1a) x1 = 1+2t2, x2 = 2+ t2, x3 = 1; b) v1 = 8, v2 = 4, v3 = 0, a1 = 4, a2 = 2, a3 = 0; 2) v1 = 16

15
, v2 =

− 4
15
, v3 = 0, a1 =

8
15
, a2 = − 2

15
, a3 = 0; 3) X1 = x1e

−t + x3 (e
−t − 1) , X2 = x2 + x3 (e

−t − et) , X3 =
x3; 4) v1 = (X1 +X3) e

t, v2 = X3 (e
t + e−t) , v3 = 0, a1 = (X1 +X3) e

t, a2 = X3 (e
t − e−t) , a3 = 0,

v1 = x1 + x3, v2 = x3 (e
t + e−t) , v3 = 0, a1 = x1 + x3, a2 = x3 (e

t − e−t) , a3 = 0; 5a) v = (2, 2, 0); b)
v =

(
2
5
, 2
5
, 0
)
; 6) Dθ

Dt
= −2x1e−t − 3x2e−3t − 3x3e−t; 7a) θ = X1 + (1 + kt)X2; b) v = (kX2, 0, 0) ,v =

(kx2, 0, 0) ,
∂θ
∂t

∣∣
X fixed

= kX2 = kx2; 8) DθDt = kx2; 9) x = (5, 0, 6); 10a) unit elongation: 2×10−4, change of

angle: 0; 11) k
2

√
2; 12a)

[
D̂
]
=

 0 kx2 0

kx2 0 0

0 0 0

 , [Ŵ] =
 0 kx2 0

−kx2 0 0

0 0 0

; b) 3k; 13) − (1 + k) ,− (1+k)
2
;

14) k = 1; 15) v1 = v1 (x2, x3) , v2 = v3 = 0; 16) ρ = ρ0e
−t2 ; 17) No
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