UNIVERSIDADE da MADEIRA Continuum Mechanics

Series of exercises 3 - Kinematics of a continuum

1. Let the motion of a body be given in component form as

$$x_1 = X_1 + t^2 X_2; \quad x_2 = X_2 + t^2 X_1; \quad x_3 = X_3$$

Determine

- (a) The path of the particle originally at $\mathbf{X} = (1, 2, 1)$
- (b) The velocity and acceleration components of the same particle when $t=2\,\mathrm{s}$.
- 2. Invert the motion equations of the preceding exercise to obtain X = X(x,t) and determine the velocity and acceleration components of the particle at x(1,0,1) when t=2 s.
- 3. Let the motion equations be given in component form by the Lagrangian description

$$x_1 = X_1 e^t + X_3 (e^t - 1), x_2 = X_3 (e^t - e^{-t}) + X_2, x_3 = X_3$$

Determine the Eulerian description of this motion.

- 4. For the motion of the preceding exercise determine the velocity and acceleration fields, and express these in both Lagrangian and Eulerian forms.
- 5. The position at time t, of a particle initially at (X_1, X_2, X_3) , is given by the equations:

$$x_1 = X_1 + (X_1 + X_2)t;$$
 $x_2 = X_2 + (X_1 + X_2)t;$ $x_3 = X_3$

- (a) Find the velocity at t=2 for the particle which was at (1,1,0) at the reference time.
- (b) Find the velocity at t=2 for the particle which is at the position (1,1,0) at t=2.
- 6. Let a certain motion of a continuum be given by the component equations,

$$x_1 = X_1 e^{-t}; \quad x_2 = X_2 e^t; \quad x_3 = X_3 + X_2 (e^{-t} - 1)$$

and let the temperature field of the body be given by the spatial description,

$$\theta = e^{-t} \left(x_1 - 2x_2 + 3x_3 \right)$$

Determine the velocity field in spatial form, and using that, compute the material derivative $D\theta/Dt$ of the temperature field.

7. Given the motion of a continuum to be

$$x_1 = X_1 + ktX_2; \quad x_2 = X_2; \quad x_3 = X_3$$

If the temperature field is given by the spatial description

$$\theta = x_1 + x_2$$

- (a) find the material description of temperature.
- (b) obtain the velocity and rate of change of temperature for particular material particles and express the answer in both a material and a spatial description.

Series 3 version 13/9/2018

8. Obtain the material derivative $\frac{D\theta}{Dt}$ for the motion and temperature field given in the previous exercise.

- 9. For superposed material and spatial axes, the displacement vector of a body is given by $\mathbf{u} = 4X_1^2\mathbf{e}_1 + X_2X_3^2\mathbf{e}_2 + X_1X_3^2\mathbf{e}_3$. Determine the displaced location of the particle originally at (1,0,2).
- 10. Given the displacement field

$$u_1 = k (2X_1 + X_2^2);$$
 $u_2 = k (X_1^2 - X_2^2);$ $u_3 = 0;$ $k = 10^{-4}$

- (a) Find the unit elongation and the change of angle for the two material elements $d\mathbf{X}_1 = dX_1\mathbf{e}_1$ and $d\mathbf{X}_2 = dX_2\mathbf{e}_2$ that emanate from a particle designated by $\mathbf{X} = \mathbf{e}_1 \mathbf{e}_2$.
- (b) Find the deformed position of these two elements $d\mathbf{X}_1$ and $d\mathbf{X}_2$.
- 11. A unit cube, with edges parallel to the coordinates axes, is given the displacement field:

$$u_1 = kX_1; \quad u_2 = u_3 = 0; \quad k = 10^{-4}$$

Find the increase in length of the diagonal AB (that connects the points: A(0,0,0) and B(1,1,0)) by using

- (a) the infinitesimal strain tensor.
- (b) geometry.
- 12. For the velocity field, $\mathbf{v} = kx_2^2 \mathbf{e}_1$, find:
 - (a) the rate of deformation and spin tensors.
 - (b) the rate of extensions of a material element $d\mathbf{x} = (ds)\mathbf{n}$ where $n = \left(\frac{\sqrt{2}}{2}\right)(\mathbf{e}_1 + \mathbf{e}_2)$ at $\mathbf{x} = 5\mathbf{e}_1 + 3\mathbf{e}_2$.
- 13. For the velocity field $\mathbf{v} = \left(\frac{t+k}{1+x_1}\right) \mathbf{e}_1$, find the rates of extension for the following material elements: $d\mathbf{x}_1 = ds_1\mathbf{e}_1$; $d\mathbf{x}_2 = \left(\frac{ds_2}{\sqrt{2}}\right) (\mathbf{e}_1 + \mathbf{e}_2)$ at the origin at time t = 1.
- 14. Given the following velocity field

$$v_1 = k (x_2 - 2)^2 x_3;$$
 $v_2 = -x_1 x_2;$ $v_3 = k x_1 x_3$

for an incompressible fluid, determine k such that the equation of mass conservation is satisfied.

- 15. In a spatial description, the density of an incompressible fluid is given by $\rho = kx_2$. Find the permissible form for the velocity field with $v_3 = 0$, so that the conservation of mass equation is satisfied.
- 16. Given the velocity field

$$\mathbf{v} = x_1 t \mathbf{e}_1 + x_2 t \mathbf{e}_2$$

determine how the fluid density varies with time, if in a spatial description it is a function of time only.

17. The state of strain throughout a continuum is specified by

$$\begin{bmatrix} \widehat{E} \end{bmatrix} = \begin{bmatrix} X_1^2 & X_2^2 & X_1 X_3 \\ X_2^2 & X_3 & X_3^2 \\ X_1 X_3 & X_3^2 & 5 \end{bmatrix}$$

Are the compatibility equations for strain satisfied?

18. The strain components are given by

$$E_{11} = \frac{1}{\alpha} f(X_2, X_3); \quad E_{22} = E_{33} = -\frac{\nu}{\alpha} f(X_2, X_3); \quad E_{12} = E_{13} = E_{23} = 0$$

Show that for the strains to be compatible $f(X_2, X_3)$ must be linear.

Solutions:

1a) $x_1 = 1 + 2t^2$, $x_2 = 2 + t^2$, $x_3 = 1$; b) $v_1 = 8$, $v_2 = 4$, $v_3 = 0$, $a_1 = 4$, $a_2 = 2$, $a_3 = 0$; 2) $v_1 = \frac{16}{15}$, $v_2 = -\frac{4}{15}$, $v_3 = 0$, $a_1 = \frac{8}{15}$, $a_2 = -\frac{2}{15}$, $a_3 = 0$; 3) $X_1 = x_1e^{-t} + x_3(e^{-t} - 1)$, $X_2 = x_2 + x_3(e^{-t} - e^t)$, $X_3 = x_3$; 4) $v_1 = (X_1 + X_3)e^t$, $v_2 = X_3(e^t + e^{-t})$, $v_3 = 0$, $a_1 = (X_1 + X_3)e^t$, $a_2 = X_3(e^t - e^{-t})$, $a_3 = 0$, $a_1 = x_1 + x_3$, $a_2 = x_3(e^t - e^{-t})$, $a_3 = 0$; 5a) $\mathbf{v} = (2, 2, 0)$; b) $\mathbf{v} = (\frac{2}{5}, \frac{2}{5}, 0)$; 6) $\frac{D\theta}{Dt} = -2x_1e^{-t} - 3x_2e^{-3t} - 3x_3e^{-t}$; 7a) $\theta = X_1 + (1 + kt)X_2$; b) $\mathbf{v} = (kX_2, 0, 0)$, $\mathbf{v} = (kx_2, 0, 0)$, $\frac{\partial\theta}{\partial t}|_{\mathbf{X} \text{ fixed}} = kX_2 = kx_2$; 8) $\frac{D\theta}{Dt} = kx_2$; 9) $\mathbf{x} = (5, 0, 6)$; 10a) unit elongation: 2×10^{-4} , change of

angle: 0; 11)
$$\frac{k}{2}\sqrt{2}$$
; 12a) $\left[\widehat{D}\right] = \begin{bmatrix} 0 & kx_2 & 0 \\ kx_2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $\left[\widehat{W}\right] = \begin{bmatrix} 0 & kx_2 & 0 \\ -kx_2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$; b) $3k$; 13) $-(1+k)$, $-\frac{(1+k)}{2}$;

14)
$$k = 1; 15$$
) $v_1 = v_1(x_2, x_3), v_2 = v_3 = 0; 16$) $\rho = \rho_0 e^{-t^2}; 17$) No