UNIVERSIDADE da MADEIRA Mecânica dos Meios Contínuos

Série de exercícios 6 - Sólido Elástico Linear

Exercises marked with www have their solution in the discipline website.

1. Consider the displacement field for a material half-space that lies to the right of the plane $X_2 = 0$:

$$u_1 = u_3 = 0; \quad u_2 = \phi \sin\left[\frac{2\pi}{l} (X_2 - ct)\right] + \beta \cos\left[\frac{2\pi}{l} (X_2 - ct)\right]$$

- (a) Characterize the movement of the particles in the medium.
- (b) Check if this is an equivoluminal motion.
- (c) Determine ϕ, β, l if the applied displacement on the plane $X_2 = 0$ is given by $\mathbf{u} = a \cos(\omega t) \mathbf{e}_2$.
- (d) Determine ϕ, β, l if the applied surface traction on $X_2 = 0$ is given by $\mathbf{t_n} = d\sin(\omega t) \mathbf{e}_2$.
- (e) Determine in which conditions the equations of motion are verified (assuming no body forces).
- 2. Consider the displacement field for a material half-space that lies to the right of the plane $X_2 = 0$:

$$u_1 = u_2 = 0; \quad u_3 = \phi \sin \left[\beta \left(X_2 - ct\right)\right] + \alpha \cos \left[\beta \left(X_2 - ct\right)\right]$$

- (a) Characterize the movement of the particles in the medium.
- (b) Check if this is an equivoluminal motion.
- (c) \clubsuit Determine ϕ, α, β if the applied displacement on the plane $X_2 = 0$ is given by $\mathbf{u} = b \sin(\omega t) \mathbf{e}_3$.
- (d) \clubsuit Determine ϕ, α, β if the applied surface traction on $X_2 = 0$ is given by $\mathbf{t_n} = d\sin(\omega t) \mathbf{e_3}$.
- 3. Example 3 T Consider the displacement field

$$u_1 = u_3 = 0; \quad u_2 = \alpha \sin \frac{2\pi}{l} \left(X_1 - c_T t \right) + \beta \cos \frac{2\pi}{l} \left(X_1 - c_T t \right)$$

for a material half-space that lies in $X_1 \ge 0$.

- (a) Determine α, β, l if the applied displacement on the plane $X_1 = 0$ is given by $\mathbf{u} = b \sin(\omega t) \mathbf{e}_2$.
- (b) Determine α, β, l if the applied surface traction on $X_1 = 0$ is given by $\mathbf{t_n} = d\sin(\omega t) \mathbf{e_2}$.
- 4. Example 4 T Consider the displacement field

$$u_1 = u_2 = 0;$$
 $u_3 = \alpha \cos pX_2 \cos \frac{2\pi}{l} (X_1 - ct).$

- (a) Show that this is an equivoluminal motion.
- (b) From the equation of motion, determine the phase velocity c in terms of p, l, ρ_0 , μ (assuming no body forces).
- (c) This displacement field is used to describe a type of wave in the region $|X_2| \leq h$. Find the phase velocity c if the planes $X_2 = \pm h$ are traction free.
- 5. www Consider a linear elastic medium. Assume the following form for the displacement field

$$u_2 = u_3 = 0;$$
 $u_1 = \varepsilon \{ \sin [\beta (X_3 - ct)] + \alpha \sin [\beta (X_3 + ct)] \}$

- (a) Characterize the movement of the particles in the medium.
- (b) Determine in which conditions the equations of motion are verified (assuming no body forces).
- (c) Suppose that there is a boundary at $X_3 = 0$ that is traction-free. Under what conditions will the above motion satisfy this boundary condition for all time?
- (d) Suppose that there is a boundary at $X_3 = l$ that is also traction-free. What further conditions will be imposed on the above motion to satisfy this boundary condition for all time?
- 6. Same questions as the preceding exercise for the following displacement field

$$u_1 = u_2 = 0;$$
 $u_3 = \sin \left[\beta \left(X_3 - ct\right)\right] + \alpha \sin \left[\beta \left(X_3 + ct\right)\right]$

- 7. A steel ($E_Y = 207 \text{ GPa}, \nu = 0, 3$) circular bar, 0, 61 m long, 2, 54 cm radius, is pulled by equal and opposite axial forces P = 44, 5 kN at its ends. Find:
 - (a) The maximum normal and shear stresses.
 - (b) The total elongation and diameter contraction.
- 8. A cast iron ($E_Y = 103 \text{ GPa}, \nu = 0, 25$) bar, 122 cm long and 3,81 cm in diameter is pulled by equal and opposite axial forces P = 89 kN at its ends. Find:
 - (a) The maximum normal and shear stresses.
 - (b) The total elongation and diameter contraction.
- 9. A steel ($E_Y = 207 \,\text{GPa}$) bar of 3,05 m length is to be designed to carry a tensile load of 444,8 kN. What should the minimum cross-sectional area be
 - (a) if the maximum shearing stress should not exceed 103 MPa and the maximum normal stress should not exceed 138 MPa?
 - (b) if it is further required that the elongation should not exceed 0, 127 cm?
- 10. Example 7 T A composite bar, formed by welding two slender bars of equal length and equal cross-sectional area, is loaded by an axial force P. If Young's moduli of the two portions are $E_y^{(1)}$ and $E_y^{(2)}$, find how the applied force is distributed between the two halves.

11. Example 8 T Consider a cylindrical bar, with radius a = 2 mm, and length l = 1 m. One end of the bar is stuck, the other is twisted through a spanner with length R = 50 cm. The force applied to the spanner is F = 10 kgf. The bar is made of steel, $E_y = 2 \times 10^{11} \text{ Pa}$, $\nu = 0.3$. Determine the angle of rotation of the spanner and the length of the path taken by its end.

Solutions:

1a) O movimento das partículas do meio resulta da propagação de uma onda plana longitudinal, direcção de propagação \mathbf{e}_2 ; b) $E_{kk} \neq 0$ trata-se de um movimento de volume variável; c) $\phi = 0; \beta = a; l = \frac{2\pi}{\omega}c;$ d) $\phi = 0; \beta = -\frac{cd}{\omega(\lambda+2\mu)}; l = \frac{2\pi}{\omega}c;$ e) $c = \sqrt{\frac{\lambda+2\mu}{\rho_0}};$ 2a) O movimento das partículas do meio resulta da propagação de uma onda plana transversal, direcção de propagação \mathbf{e}_2 ; b) Trata-se de uma onda plana de volume constante pois $E_{kk} = 0$; c) $\phi = -b$; $\alpha = 0$; $\beta = \frac{\omega}{c}$; d) $\phi = 0$; $\alpha = -\frac{dc}{\mu\omega}$; $\beta = \frac{\omega}{c}$; 3a) $\alpha = -b$, $\beta = 0$, $l = \frac{2\pi c_T}{\omega}$; 3.b) $\alpha = 0$; $\beta = -\frac{dl}{2\pi\mu} = -\frac{c_T d}{\mu\omega}$; $l = \frac{2\pi c_T}{\omega}$; 4b) $c = \sqrt{\frac{\mu}{\rho_0}}\sqrt{1 + \left(\frac{lp}{2\pi}\right)^2}$; 4c) $p = \frac{\pi n}{h}$; n = 0, 1, 2, ...; 5a) O movimento das partículas do meio resulta da propagação de duas ondas planas transversais, direcção de propagação \mathbf{e}_3 ; b) $c = \sqrt{\frac{\mu}{\rho_0}}$; c) $\alpha = -1$; d) $\beta = \frac{k\pi}{l}$ com k = 1, 2, 3, ...; 6a) O movimento das partículas do meio resulta da propagação de duas ondas planas longitudinais, direcção de propagação \mathbf{e}_3 ; b) $c = \sqrt{\frac{(\lambda+2\mu)}{\rho_0}}$; c) $\alpha = -1$; d) $\beta = \frac{k\pi}{l}$ com k = 1, 2, 3, ...; 7a) $(T_n)_{max} = \frac{P}{A} = 21, 9 \text{ MPa}$; $(T_s)_{max} = \frac{P}{2A} = 11, 0 \text{ MPa}$; 7b) $\Delta l \approx 65 \,\mu\text{m}$; $\Delta d \approx -1, 62 \,\mu\text{m}$; 8a) $(T_n)_{max} = 78 \text{ MPa}$; $(T_s)_{max} = 39 \text{ MPa}$; 8b) $\Delta l \approx 9, 24 \times 10^{-4} \text{m}$; $\Delta d \approx -7, 21 \times 10^{-6} \text{m}$; 9a) $A > 3, 2 \times 10^{-3} \text{ m}^2$; 9b) $A > 5, 2 \times 10^{-3} \text{ m}^2$; 10) $P_2 = -\frac{E_y^{(2)}}{E_y^{(1)} + E_y^{(2)}} P$, $P_1 = \frac{E_y^{(1)}}{E_y^{(1)} + E_y^{(2)}} P$; 11) $\theta(l) = 25.36 \text{ rad}.$