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REVIEW

THEORY OF ELECTRICAL PROBES IN FLOWS OF HIGH-PRESSURE
WEAKLY IONIZED PLASMA

M. S. Benilov UDC 533.9.082.76

This review is devoted to the present status of the continuum theory of electrical
probes in a moving, weakly ionized plasma. The system of hydrodynamic equations and bound-
ary conditions, determining the distribution of the charged-particle density and potential
around a probe, is studied. A system of evaluations which permits analyzing for typical
conditions the character of the solution in the region near the probe and the form of the
IVC is presented. Works devoted to the calculation of different sections of the IVC are
studied. Some questions concerning comparison of theory and experiment as well as possible
diagnostic methods are discussed.

1. Introduction. Electrical probes for diagnostics of low-temperature plasma have a
number of advantages, including simplicity of the experimental implementation and the pos-
sibility of measuring local parameters. Unfortunately the theory of electrical probes in
the continuum plasma is quite complicated. The status of this theory in the mid-1970s is
presented in the reviews {1, 2]. The purpose of this work is to supplement these reviews
and to examine the present status of this theory for the case of a moving, weakly ionized
plasma. The analysis is limited to the basic problems in the theory of single stationary
probes; more subtle questions, such as double probes [3], probes in nonstationary regimes
[4-6], probes in a turbulent plasma [7], and probes in a plasma with an applied electric
field [8], fall outside the scope of this work.

2. Determining Equations and ‘Boundary Conditions. We shall study a conducting body
(electrical probe) in a moving plasma containing ions (generally speaking, ions of several
different types), electrons, and neutral particles (in the general case, also of different
types). We shall assume that the degree of dissociation and ionization of the main neutral
components (i.e., the components whose concentration is not too low and whose contribution
to collisions with charged particles is significant) are low and their molar fractions are
virtually constant near the probe. We shall neglect the effect of ionization on the flow
field of the neutral components and the effect of collisions between charged particles (with
the possible exception of interelectronic collisions) on transport processes. The system
of determining equations includes the equation of conservation of charged particles and
Poisson's equation [1]
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PV (rf) + VT (mmi, ) Ap=—dite 3| Tnim (1)

mo=i,e

as well as the transport equations, which can be written in the form (see, for example, [9])
Jm=—pvm(vpm/e+zmnqu)) (m=i, e). (2)

Here nj, ng, Jj, and Jo are the densities and diffusion-flux densities of the ions and elec-
trons (the index i runs through the values corresponding to different types of ions); ¢ is
the electrostatic potential; n and v is the total density and the mean mass velocity of the
plasma (this quantity as well as the temperature of the neutrals T can be found by solving
the corresponding problem of flow around the probe without taking into account the presence
of ionization and here the functions of the coordinates are assumed to be given); fy is the
rate of change of the density of the m-th component as a result of volume reactions; e is
the electron charge; up, Zp, and pp are the mobility, charge number, and partial pressure of
the m-th component (pj = njkT, where k is Boltzmann's constant; the relation between pg and
ng will be given below). In writing down the transport equations (2) the terms taking into
account thermal diffusion and some terms taking into account pressure diffusion have been
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dropped; these effects are usually small and they need be taken into account only in special
cases [1, 10, 11].

The hydrodynamic transport equations (2) for ions (m = i) are applicable for A « L,
where L is the local value of the mean-free path length of charged particles with respect to
elastic collisions (for convenience it is assumed that the mean-free path lengths of the elec-
trons and ions are of the same order of magnitude), and L is the local macroscopic scale,
i.e., the characteristic size of the hydrodynamic zone studied.

In the case of a weak field (eEX « kT, where E is the intensity of the electric field)
these equations can be regarded as a particular case of the Stefan—Maxwell relations for
multicomponent diffusion [12, 13]; see also [14]. If among the neutral components of the
plasma one component is the chief component, then yujn is a funct%on of the temperature only
and, to a first approximation [10, 13], equals 3e/(l6miqﬂiq(1'1 ), where Qiq(1'13 is the
collisions integral [13, 15] and miq is the reduced mass; this quantity can be determined
either from the experimental data or from results of the calculation of the collision inte-
gral (this calculation can be performed based on the known transport cross section or the
ion-neutral interaction potential). If the number of chief neutral components of the plasma
is greater than 1, ujn also depends on their molar fractions xg; to a first approximation,
this dependence is described by Blank's law [10] and the mobility is expressed in terms of
the mobility in the pure gases Hiq

(D) .
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In the case of a strong field (eEX 2 kT) the diffusion term in the transport equations
for ions is of the order of A/L relative to the drift term and is small when the hydrodynamic
approximation is applicable. We note that this is why in most problems studied Einstein's
relation with the temperature of the neutrals, which is not applicable in strong fields, can
be used to write down the diffusion term in Egqs. (2). The quantity uin in the case of a
strong field becomes a function of E/n also, and Blank's law, generally speaking, is no long-
er valid. To determine this quantity experimental data or the results from the solution of
the kinetic equation must be employed.

An extensive collection of data on the mobilities of ions in pure gases is given in
(16, 17].

The hydrodynamic transport equation (2) for electrons (m = e) is applicable, if at
least one of the following two conditions holds:

ML,  A(Venfves)<L. (3)

Here A, = A//E, where § is a parameter characterizing the transfer of energy from electrons
to heavy particles (for elastic collisions it equals twice the ratio of the electron mass

to the mass of a heavy particle, while for inelastic collisions it equals the same value
multiplied by the coefficient of inelastic losses); Vep and vge are the local values of the
electron—neutral and electron—electron elastic collisions frequencies. We note that the
scales Ay, A(vVep/vee)'/? are the energy relaxation length of the electrons owing to colli-
sions with neutrals and the maxwellization length owing to interelectronic collisions.

The first of these conditions is discussed in [8], while the second condition follows from
[19, 20]. When the transport cross sections for electron—neutral collisions are known and
the electron distribution function, more precisely its chief — isotropic — part f°, is known
the mobility of the electrons is determined by Lorentz's formula for a weakly ionized plasma
[9, 18, 21].

If the first condition (3) holds, then the function f° (and, therefore, the quantity
Hen) is determined by the local values of the parameters T, E/n, xq, and xg; in writing
down the diffusion term in the transport equation it may be assumed that p, = ngkT. 1In
the case E « kT/(e),) f° is Maxwell's function with the neutrals temperature and pg no long-
er depends on E/n and x,. In the case E 2 kT/(e)y) f° for vee/ven s 8 is not, generally
speaking, Maxwellian [9, 18, 21]; for vee/Ven > & f° is the Maxwellian function with the
temperature To, determined by the local balance of Joule heating and energy exchange with
neutrals. It is important to note that in the case E 2 kT/(e),) the diffusion term in the
transport equation for the electrons is of the order of A,/L « 1 relative to the drift
term, which is what justifies in most problems studied the use of Einstein's relation with

the neutrals temperature.
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If only the second condition of (3) holds (which is possible, if Vee/Ven ® 8), £° is Max-
well function with the temperature To,. To determine this temperature the system (1), (2)
must be supplemented with a differential equation for the electronic energy [1, 9]. 1In

writing down the diffusion term for the transport equation it must be assumed that pg =
ngkTg.

An extensive collection of data on the mobilities and transport scattering cross sec-
tions for electrons is presented in [22-25].

The boundary conditions for the charged-particle density and the potential on the sur-
face of the probe, which is assumed to be ideally absorbing and nonemitting, and far from
the probe have the form [1]

nm=0 (m=i,e); Q=qu, (4)
Rm=Nme (m=i1 e); (P=0: (5)

where ¢, and np. are the potential at the surface of the probe relative to the plasma and
the charged-particle density in the undisturbed plasma (fixed quantities).

We shall examine briefly the justification for the first boundary condition (4) for
ions first. The most systematic derivation is based on the asymptotic analysis of Boltz-
mann's equation [26]. On the basis of this approach the region of plasma near the wall
is divided into a Knudsen layer, i.e., a region of thickness of the order of A near the
wall, and the hydrodynamic region adjacent to it with characteristic linear size L8 >» A.
An asymptotic expansion of the distribution function in the small parameter A/L8 is con-
‘structed in each zone. Joining these expansions gives, in particular, the condition which
the first term of the asymptotic expansion, valid in the hydrodynamic region, must satisfy.
This condition is the macroscopic boundary condition sought.

The justification of the first condition (4) for the case when the field in the region
near the wall is weak is given in [26], and can be formulated as follows. Let nik and ny8
be the scales for the ion density in the Knudsen layer and the hydrodynamic region. The
flux of ions to the surface in the Knudsen layer can be evaluated, taking into account the
anisotropy of the distribution function, in order of magnitude as nikCi, and in the hydro-
dynamic region as Dyn;8/L8, where C; and Dy are the characteristic thermal velocity and
coefficient of diffusion of ions. Since across the Knudsen layer the flow is conserved
(to within the ratio of the ionization, recombination, attachment, etc. frequencies to
the frequency of elastic collisions), these estimates can be equated, whence nik/nig ~
A/L8 « 1. For joining to be possible, the first term of the asymptotic expansion of the
distribution function in the hydrodynamic region must vanish on the surface of the probe,
whence follows (4).

In the case of a strong field the diffusion term in the transport equations for the
ions in the hydrodynamic region, as indicated above, is small compared with the drift
term and can be dropped. The order of the degenerate system of hydrodynamic equations ob-
tained in this manner and therefore the number of boundary conditions required for it are
reduced. It can be expected that on the basis of this formulation of the problem the bound-
ary condition at the surface is superfluous for ions drifting toward the surface; the first
condition of (4) holds for ions drifting away from the surface. On the other hand, the
solution that can be obtained on the basis of this formulation equals to order A/L8 the
solution described by the starting formulation, taking into account the diffusion term and
using the first condition of (4). Only the density distribution of ions drifting to the
surface in the region of thickness of the order of A near the wall is an exception: on the
basis of the degenerate problem this concentration is constant to a first approximation,
whereas on the basis of the problem with diffusion it drops to zero (we note, by the way,
that both solutions are unphysical in the indicated region and in order to find the true
density distribution the first term of the asymptotic expansion of the distribution function
in the Knudsen layer must be found). For this reason, in order to give a unified descrip-
tion, which is important, for example, for numerical calculations, Eq. (2) with the diffu-
sion term and the first boundary condition of (4) can be employed also in the case of a
strong field; one should only keep in mind that the diffusion drop, obtained on the basis
of this approach, in the density of ions drifting toward the surface is unphysical.
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The structure of the nonhydrodynamic region near the wall is more complicated for
electrons [19, 20]: Aside from a Knudsen layer with thickness of the order of A, in which
the distribution function is anisotropic, there exists another kinetic layer, in which the
distribution function is isotropic to a first approximation, but is nonlocal and is not
Maxwellian; to determine it the kinetic equation with spatial derivatives must be solved
[9, 18]. The thickness of this kinetic layer is much greater than A and is determined [20]
by the smaller of the scales Ay, A(vepn/Vee 1“)1/2, where Veekln is the electron—electron
collision frequency, evaluated from the characteristic electron density in the kinetic
layer nekln.

If Svgy 2 veekin, the thickness of the kinetic layer is of the order of A;,. 1In the
adjacent hydrodynamic region the first condition (3) holds. In the case E « kT/(e),),
evaluating the electron flux in the kinetic layer and the hydrodynamic region as neklnce/g
and Dgne8/LB (ngB, Cg, Dg are the scale of the electron density in the hydrodynamic region,
the thermal velocity, and the coefficient of diffusion of electrons) and equating these
estimates (to within the ratio of the ionization frequencies, etc., to 8Ven), we obtain
nekln/neg ~ Ay/L8 « 1 and the boundary condition (4) is valid. As in the case of a strong
field for ions, this condition can also hold for E 2z kT/(e)y).

If dvgy « veekin, the thickness of the kinetic layer is of the order of A(ven/veekin)1/2.
'In the adjacent hydrodynamic region only the second condition of (3) holds, since the quan-
tity A, in this case is itself a macroscopic scale — at distances of this order the transfer
of electronic energy by heat conduction is comparable to energy exchange with neutrals, Es-
timating the fluxes in the kinetic layer and the hydrodynamic region as neklnCe(\)eekln
Ven)*/? and Dgng8/L8, we obtain ngkif/ng8 ~ A(vep/veekin)*/2/L8 « 1 and (4) is once again
valid.

Thus, the boundary condition (4) is justified for electrons also. We note that in the
case 8Vgy < VeeXiN, in order to close the hydrodynamic formulation of the problem a boundary
condition must be formulated at the surface of the probe for the electron-energy equation.
Since this equation [1, 9] has a singularity [1] on the surface of the probe, we shall find
its asymptotic solution near the surface. This asymptotic solution includes two terms,
one of which is bounded while the other is logarithmic. In this situation the condition
that T is finite on the surface of the probe can be regarded as the boundary condition
sought. We obtain an equivalent form of this equation by writing down on the surface a first-
order differential equation which the first of the terms mentioned above satisfies

( En 5\ 0T, 5 en, [On,\""
o — = —— ..—..) _..eEvl
kn,D, 2 dy 2 u, \dy

where Kpe is the coefficient of electronic thermal conductivity and the y axis is directed
along the normal away from the surface of the probe. This condition can be regarded as a
generalization of the conditions obtained by somewhat different methods in [27, 28].

The conditions for applicability of the solution derived on the basis of the foregoing
hydrodynamic formulation of the problem are as follows in the general case. The character-
istic size of the probe a must satisfy one of the conditions (3). In the case when the so-
lution obtained describes several hydrodynamic zones with different linear scales, one of
the conditions (3) must satisfy each of these scales.

3. Solution Methods and Results. With the exception of some very special cases the
nonlinear elliptic boundary—value problem (1), (2), (4), and (5) does not have an analytic
solution. Numerical solution methods are available primarily for one-dimensional problems
[5, 29-34] (as one exception we call attention to [35, 36], where two-dimensional numeri-
cal calculations are presented for the case when the charged-particle density in the plasma
is low and the Debye radius is comparable to the size of the probe; we also note that in
constructing the numerical algorithms the fact that for small Debye radii the Poisson equa-
tion is inconvenient for determining ¢ [34, 37], since the only term in this equation con-
taining ¢ is small in the main part of the plasma volume, should be taken into account).
For this reason approximate approaches, making it possible to calculate one or another sec-
tion of the IVC, are employed in most works on the theory of probes in flows. We note that
to determine the accuracy and range of applicability of these approaches it is natural to
use numerical solutions for model one-dimensional problems.
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We shall explain the essence of some of these approximate approaches for the often-
encountered example of a probe in a plasma flow with a large Reynolds number Re and small
Mach number M under conditions when h « A& £ d, where Re = Ve 1/Ve3 V is the coefficient of
kinematic viscosity; h and d are the Debye radius and a scale characterizing volume reac-
tions, for example, the recombination length, evaluated based on the parameters of the un-
disturbed plasma; 4 = «//Re is the scale thickness of the gas-dynamic boundary layer at the
probe; the indices « and w here and below are assigned to values corresponding to the undis-
turbed incident flow and to the surface of the probe. As another example we examine the
case of an uncooled probe in a plasma at rest under conditions when h «d «a. In this
case everything said below remains valid with the exception that the analogs of the region
of nonviscous flow and the gas-dynamic boundary layer will be, respectively, the region of
equilibrium ionization and the diffusion layer, 4 = d.

Asymptotic solutions of problems of this type were studied in [38-40]. We shall pre-
sent some asymptotic estimates, following from these solutions. We shall assume that the

first condition of (3) holds in each of the hydrodynamic zones.

The entire region near the probe can be divided into a region of nonviscous flow, the
quasineutral part of the gas-dynamic boundary layer, and the volume-charge layer near the
wall (the Debye layer or DL). These zones are shown schematically in Fig. 1. In the re-
gion of nonviscous flow np = npe, and in the quasineutral part of the gas-dynamic boundary
layer np ~ Npw. The scale of the diffusion flow in all three zones is the same and is de-
termined by the order of magnitude of the diffusion term in Eq. (2) in the quasineutral
part of the boundary layer Jy ~ Dpnpe/A. The electric field in the region of nonviscous
flow and in the quasineutral part of the boundary layer is of the order of kT/(ea). In
the region of nonviscous flow drift transport of charged particles is much stronger than
diffusion transport, while in the quasineutral part of the boundary layer drift transport
is comparable to diffusion transport.

To estimate the orders of magnitude of quantities in the DL we shall use the results
of the asymptotic analysis, which has been performed many times in the literature for col-
lisional volume-charge layers, starting with [41, 42]; in particular, in [43, 44] the solu-
tion is constructed by the method of joined asymptotic expansions in a small parameter (in
connection with the work [43] mentioned, we note that the refinements regarding the condi-
tions of applicability of the solution of [42] and the existence of two and not one, like
in [41], transitional regions between the main part of the DL and the quasineutral region,
made in [43] and cited in the book [1], are not correct [44, 45]). In the case when the DL
is uniform (i.e., it does not have an internal structure) [42, 44], diffusion and drift
transport in the DL are comparable and are of the order of Dpnpe/4, whence follow expres-
sions for the orders of magnitude of np and E in the layer in terms of its thickness scale
yp: np ~ n?myD/A, E ~ kT/(eyp). Substituting these values into Poisson's equation we obtain

yp ~ (h2a)1/3 « A,

In the case when the thickness of the DL is much greater than (th)1/3, but does not
exceed A in order of magnitude, the layer is nonuniform [41, 43] and includes the main part
and the transitional region separating it from the quasineutral region and the surface of
the probe, respectively, and the zone of diffusion drop in the density of particles drift-
ing toward the probe. In the transitional region the estimates made above are valid, i.e.,
np ~ nmw(h/A)2/3, E ~ kT/[e(th)1/3], and its scale thickness equals (th)1/3 and is much
less than yp. In the main part of the layer the density of particles repelled by the field
of the probe is low. For particles that are-attracted the main transport mechanism is
drift, and their density is of the order of nmmh(yDA)‘llz; E ~ (yD/A)l/sz/(eh). The thick-
ness of the main part, by virtue of the small thicknesses of the adjacent layers, equals the
thickness of the DL as a whole yp. In the zone of diffusion dropoff the orders of the parti-
cle densities are the same as in the main part, drift transport of attracted particles is
comparable to diffusion transport, the intensity of the electric field is constant, the
scale thickness of this zone equals h(A/yp)'/2? and is much less than both yp and the scale
thickness of the transitional region. Obviously, when the parameter yp decreases as it be-
comes comparable to (h24)'/3 the structure of the layer degenerates and the estimates pre-
sented above become the corresponding estimates for the case of a uniform DL.

It follows from what was said above that the condition for the first inequality of (3)
to hold in all hydrodynamic zones is equivalent to the condition Ay <« h(a/yp)*/2?. Obvious-
ly, under this condition in all zones f°® is the Maxwellian function with temperature T.
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Fig. 1. Asymptotic structure of the region near the probe:
1) region of nonviscous flow, 2) quasineutral part of the
gas-dynamic boundary layer, 3) DL.

Fig. 2. IVC of the probe.

In the case of a thin DL, yp « A, the generation of particles in the DL by virtue of
the condition d * A is weak and the fluxes of charged particles toward the probe and, there-
fore, the current of the probe are determined by the fluxes from the quasineutral region to
the outer boundary of the DL. In this connection we shall examine the problem of describing
the charged particle density distribution and the electric field distribution in the quasi-
neutral part of the gas-dynamic boundary layer. The system of equations and the boundary
conditions on the outer boundary of the boundary layer have the form

nv-V(ng/n) +0) iy Oy = tim; 'Zl Zmlm=0, (6)
mei,e
( kT 8 ny ) '
]my=p-m —Tna—y——n—-i-zmn,,.E,, ; (7)
YA+, Ry Rpe. (8)

To close this problem boundary conditions at y = 0 are required; they are determined
from the joining with the asymptotic expansion of the solution in the transitional region
(or in the DL as a whole, if it is uniform). Obviously, for the functions np this expansion
starts with terms of order nmm(h/A)2/3 « Npw. For this reason, for y = 0 the quasineutral
densities vanish; we shall write the boundary condition for Ey following [46]:

K—-4 kT, 1

—_—— .

y—-0: np,—0; E, =
" YK+l e y

(9)

-1
where K=( Zlm,/pm) (2 J,,.,,/p,,.) is a given parameter, characterizing the potential of the
m=i_.e Y i, ¥ .
probe (the first and second sums extend over components with negative or positive charge,
respectively), and all ions are assumed to be singly charged.

It is important to note that in the problem (6)-(9), determining the functions Npy»
me, and Ey in the quasineutral part of the gas-dynamic boundary layer, the effect of the
potential of the probe is manifested only through the parameter K. As K » 0 (K » ), i.e.,
to suppress the flow of negative (positive) components toward the probe, this effect vanishes
and therefore the probe current approaches some constant value, which we shall denote by
I+(I-).

Thus, in the regime of a thin DL the probe current is bounded by the values I and I..
We note that Ji~eDin..a*/A, J_~eD.n oa*/A
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The foregoing considerations permit analyzing the IVC of the probe [4C]. In the range
of currents I; < I < I. the DL is uniform, the region of nonviscous flow makes the main con-
tribution to the total potential difference between the probe and the plasma, and the IVC
is therefore linear.

In the region I > I. we have yp ~ A, and the region of nonviscous flow and the DL make
the main contributions to the probe-plasma potential difference. These contributions are
of order (kT/e)e/A and (kT/e)A/h, respectively. The ratio between these contributions is
determined by the parameter ah/A? (we note that this parameter equals, in order of magnitude
Reh/a or, which is the same thing, Mh/A). In the case ah/A? > 1 the contribution of the
DL is determining, and the quantity dI/d¢,, characterizing the slope of the IVC with respect
to the voltage axis, is of the order of 0w2?h/A% (¢ is the conductivity of the plasma), which
is much smaller than the order of magnitude of this quantity in the region I <I<I., equal
to 0o , i.e., the IVC distinctly saturates at I = I.. In the case ¢h/A? ~ 1 the contribu-
tions are comparable and the IVC has an intermediate form.

In the region I <« I+, yp ~ A, the contributions of the region of nonviscous flow and
the DL are of the order of 8(kT/e)a/A, (kT/e)a/h, where B = D;j/Dg < 1. Depending on the
order of magnitude of Bah/A2? the IVC is linear or it saturates at I = I4 or it is of an
intermediate form.

We note that because the problem is not one-dimensional the limiting current densities
on different sections of the surface are not the same and are achieved for different values
of ¢oy. This effect is not discussed here (see [40]).

Based on the foregoing estimates it may be expected that the potential of the plasma
equals, to order kT/e, the floating potential. We note that a more accurate estimate gives
for the floating potential of the probe relative to the plasma the value (kTy/e)ln[(h/a
Bl; however, the expected accuracy of this estimate is low (logarithmic).

Three relatively simple approaches follow in a natural manner from the foregoing discus-
sion. On the basis of these approaches either the linear section of the IVC of the section
of currents of positive or negative particles I < I, I > I. (in this case only the voltage
drop in the main part of the DL is taken into account) or the saturation currents of the
positive or negative particles I,, I. are calculated approximately. The latter two approach-
es are not applicable for Bah/A2 « 1 and ah/A%? « 1.

Figure 2 shows schematically the IVC of the probe (solid line) and the linear section
(1), the sections of the currents of positive or negative particles (2 and 3, respectively),
and the saturation currents calculated on the basis of the approaches indicated.

It was assumed above that A, < h(A/yD)l/z, h « A « a. It may be expected that the
approaches presented are also valid under less restrictive assumptions. In particular, in-
stead of the first of these conditions it is apparently sufficient to satisfy the inequality
Ay < A. One would expect that in this case the solution obtained on the basis of the stud-
ied formulation of the problem will also remain valid in the region of nonviscous flow, the
quasineutral part of the boundary layer, and (if yp ~ &) in the main part of the DL, i.e.,
in the regions that determine the sections of the IVC employed in the approaches described.
We note that in calculating the linear section of the IVC, the saturation current of positive
ions, and (if A « h) the section of positive-ion current the effect of the electric field on
the transport and kinetic coefficients can usually be neglected (in the region of nonviscous
flow and the quasineutral part of the boundary layer f° is the Maxwell function with the
temperature T, while in the main part of the DL the electron density is low; over the entire
volume, including the main part of the DL, the condition eEA <« kT holds).

The second condition can apparently also be weakened: the first of the approaches
enumerated above remains valid also for h ~ A « a, while the second and third approaches
remain valid for h <« g A.

We shall first study in greater detail the first approach. The distribution of the
potential in the region of nonviscous flow is described by the equation

V- (0Vg) =0.

Under the assumption M « 1 in the region of nonviscous flow 0 = 0 (in the case of an
uncooled probe in a plasma at rest ¢ = g, in the region of equilibrium ionization because
the pressure and temperature are constant), and this equation becomes Laplace's equation.
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For this reason the expression describing the linear section of the IVC can be written in
the form [40]

19o=4nC0 . (10)

The electric capacitance of the probe C, introduced here, depends only on the geometry
of the probe. In particular, for a spherical probe with radius R C = R; for a probe in the
form of a thin rod with length L and radius R C = L/[21n(L/R)]; for a diskoid probe with
radius R C = 2R/7; the formulas for a probe in the form of an ellipsoid of revolution are
also known (for exmaple, [47, 48]); for a built-in probe in the form of a circle with radius
R, placed flush against an immobile plane, C = R/w; for a probe in the form of a hemisphere
with radius R, placed on a nonconducting plane, C = R/2, etc. We note that with the help

of the results of [49] the formula (10) can be extended to the case of a probe in a magnetic
field.

If M 2 1, the conductivity of the plasma in the region of nonviscous flow is, generally
speaking, variable and the slope of the linear section is not described by the formula (10).
In the case M >»> 1 the bow shock wave forming in front of the probe is often set off by a
small distance, and the unperturbed region in front of the shock wave may be expected to
make the main contribution and (10) remains valid. In the case when the volume reactions
at times of the order of the transit time a/ve, are frozen, the molar fractions of the charged
particles in the region of nonviscous flow are constant; if, in the process, ugn is constant
for the temperature range studied (this approximation is satisfactory, for example, for a

combustion-product plasma), then the conductivity of the plasma in the region of nonviscous
flow is constant and (10) is once again valid.

In most works performed on the basis of the second and third approaches, a plasma con-
taining charged particles of two types — electrons and positive ions of one type — is stud-
ied, and the ionic section of the IVC or the ionic saturation current are calculated. The
sections of the ion current of the IVC of the probes in a plasma with volume ionization and
recombination were calculated in [50-52]. 1In [50] a situation when the generation of
charged particles in the DL is weak and the probe current is determined by the diffusion
flow of ions to the outer boundary of the DL was studied. In connection with the analysis
of probes in a plasma with an external source of ionization or with ionizatjion in collisions

with neutral components of the plasma a situation when the contribution of generation to the
DL is significant was studied in [51, 52].

The ion-current sections of the IVC of probes in flows of plasma with frozen ionization
and recombination for Re >» 1 were calculated in [53, 54]. In addition to these works, in
which the case yp ~ A is studied, there is also a large group of works in which the case
yp » b is studied (the so-called "sheath-convection" regime; these works are reviewed in
[2], and we also call attention to [55-58]). The distinguished feature of this last case
is the simplicity of the calculation of the flow on the outer boundary of the DL, which
equals nj,v) (v, is the projection of the mean-mass velocity on the normal to the outer
boundary of the DL). To explain this feature we shall examine briefly the buffer zone
separating the region of nonviscous flow and the main part of the DL; in so doing we shall
assume that h « A « yp 5o and we shall take into account the results of [59]. For hyp/

A? « 1 this zone is analogous to the corresponding zone in the case yp ~ A and includes the
quasineutral diffusion region in which convective, drift, and diffusion transport of charged
particles are comparable and the transitional region in which the nonquasineutrality is sig-
nificant and convective transport is small. Taking into account the fact that v| ~ vwyp/a ,
we find the scales of the thickness of these regions: 82/yp, (thz/yD)1/3. For hyp/aZ~1
these scales are identical; the buffer zone is uniform and all effects enumerated above are
important in it. TFor hyp/A? > 1 the buffer zone once again becomes nonuniform. It includes
a layer in which the electron density drops and the electrons are repelled by the field of
the probe, while convection maintains the ion density constant, and a convective-drift layer,
in which the ion density decreases from Niwo to values corresponding to the main part of the

DL (it is assumed that Byph/A2 <« 1). The scale thicknesses of these layers equal h and
h?yp/a2. -

With the help of the estimates made above it is not difficult to show that the flow of
ions across the buffer zone is much stronger than the convective flow of ions in the longi-
tudinal direction. For this reason the flux density of ions across the buffer zone changes
little and is determined by the convective and drift flows at distances from this zone much
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greater than its thickness. Finding the electric field from the condition that there is
no electron flux, we find that this density equals njov (1 + pj/ue), whence follows, by vir-
tue of the smallness of uj/pg, the expression presented above.

The voltage drop in the DL for A < yp s e is of the order of (kT/e)yp?/(ha) (for com-
parison we note that for (h2a)t/3 ¢ yp § A this quantity is of the order of (kT/e)yD3/2/
(hat/2)). In order to be able to neglect the voltage drop in the region of nonviscous flow
it is necessary that Bah/(Ayp) « 1. If yp < e, the main part of the DL can be regarded
as locally one-dimensional; if yp ~ «, non-one-dimensional effects must be taken into ac-
count.

There are many works on the calculation of the ion saturation current. On the basis
of the model of a plasma with two types of charged particles and under the additional as-
sumption that the ratio pj/pe is constant in the temperature range studied (this assumption
holds with adequate accuracy, for example, for a combustion-product plasma) the calculation
of the saturation current reduces [38, 60] to the solution of the equation of ambipqlar
diffusion, for which well-developed methods, including analytical methods, exist.

In the case when volume ionization and recombination are frozen, this equation is
linear and the saturation current is proportional to ngw. Analysis of the results of the
calculations [1, 2, 48, 61-64] shows that the ion saturation current toward the probe in
the flow with small M is virtually independent of the surface temperature of the probe,
and to a first approximation can be calculated neglecting the variability of the transport
properties of the plasma. Then the general expression for the ion saturation current toward
the probe with a given geometry can be written in the form

I.=Shen.,xD:xa, (ll)
where Sh is a dimensionless coefficient that depends on Re and Sc:
(Sc=Yw (Diw +Dex)/ (2010 D) 2V (2D1)).

To determine this coefficient it is necessary to find an explicit solution of the correspond-
ing hydrodynamic problem. In particular, for Re « 1, taking into account two terms in the
expansion in terms of Re, the equality [48]

c 1
Sh=8mx —- (1 + —2—— Sc Re ),

a
where Re = vC/Vve, holds.

For Re » 1, Sh ~ YRe and the formula (11) can be written in the form
I.,=Fenew (VeDixad)’,
where F is a dimensionless coefficient that depends (usually quite weakly) on Sc.

For a built-in probe on a flat plate this coefficient can be found with the help of
the formulas (3.41) and (3.42) from [1]. We note that the analogous formula is given in
(2] under the number (31), but the coefficient there is too high by almost a factor of two.
The reason for this error is that the asymptotic expansion in the limit Sc + 0 [65], em-
ployed in the derivation of the indicated formula as an approximate solution of the equation

of ambipolar diffusion, is inapplicable for real values of Sc, which are of the order of
unity.

For a built-in probe on the bow surface of the sphere, F can be found from [63]. We
note that a formula for the case when the entire bow part of the surface of the sphere right
up to the point of detachment of the laminar boundary layer is of a collection character
is given in [2] [formula (34)]. A calculation using this formula gives values that are ap-
proximately two times higher than the exact values (obtained numerally) [66]. The satura-
tion current density at the critical point of the cylinder and — on the basis of the analogy
between mass and heat transfer and the experimental data on the heat exchange with a cylin-
der — the saturation current on the full surface of the cylinder were calculated in [67].

If the factor of two lost in [67] owing to the use of an incorrect relation between the satu-
ration current density and the derivative of the quasineutral charged-particle density at

the surface of the probe is introduced into the expressions obtained, then the current den-
sity at the critical point will be virtually identical to [63, 64], while the total current

788



will exceed the current calculated based on

by ~25¥; Yhich gives an estimate of the contribution of the back half for the given condi-
tions [66].

[63, 64] on the upstream half of the cylinder

For Re ~ 1 the saturation current can be found with the help of the numerical solution

of the elliptical problem. Such calculations for the case of a cylindrical probe were per-
formed in [68, 69].

The validity of the above-mentioned formulas of [1] for the wall probe on a flat plate
is not limited to the assumption M « 1. The validity of the formulas (3.43) and (3.44) in
[1] for built-in probes on a cone and at the critical point of a blunt body is also not °
restricted by this assumption [apparently in the formula (3.44) the term 2(1 + €) must be
replaced by v2(1 + €) and (du/dx)g must be replaced by dug/dx]. These formulas relate the
saturation current with the parameters on the outer boundary of the boundary layer, rather
than in the undisturbed flow. The formulas relating the saturation current on a spherical
probe to nge in a flow with large M and moderate Re, when the flow around the probe occurs
in the regime of a viscous shock layer, were derived in [70, 71]; the results of a numerical

calculation of the charged-particle density distribution and the potential distribution on
the critical line of a viscous shock layer are presented in [72].

In the case when volume ionization and recombination in the vicinity of the probe are
significant, the equation of ambipolar diffusion becomes nonlinear. In the limit of rapid
flow of reactions (d « A) this equation can be solved analytically [73]. This solution,
however, relates the saturation current not with News but rather with some value of the
equilibrium density in the perturbed region. For this reason the saturation current can be

used to determine ngw in this limit only in the case when the equilibrium concentration in
the vicinity of the probe is constant.

The saturation current on probes in flows with large Re with nonequilibrium flow of
reactions (d ~ A) was calculated in [74-78]. 1In all these works, except for [76], numerical

methods were employed; in [76] an approximate expression for the recombination rate that is
linear in the charged-particle density was employed.

We note that the saturation currents on strongly cooled and uncooled probes in a plasma
with thermal ionization depend substantially differently on ngo. In the case of a strongly
cooled probe the rate of thermal ionization near the probe is low, and recombination has
the determining effect on the current. Since the recombination coefficient increases as
New increases, the current grows more slowly than New. In the case of an uncooled probe as
New increases the spatial scale of the change in the charged-particle density at the surface

of the probe, proportional to d, decreases, as a result of which the current grows more
rapidly than nge.

In the works enumerated above we studied a situation when the temperature profile near
the probe is monotonic. A formula for the saturation current on a built-in probe on a sharp
cone, when the local Mach number of the flow is large and the temperature profile in the

boundary layer- has a maximum near which ionization occurs, is given in [1] under the number
(3.47) and is refined in [60].

In the works enumerated above, the saturation current was calculated taking into ac-
count the presence of positive ions of one type and electrons in the plasma. The case
when negative ions of one type are also present while reactions are frozen was studied in
[79-81]. It is shown in [79, 80] that the presence of negative ions leads to a small in-
crease in the saturation current of positive ions on a built-in probe on a flat plate in
a boundary-layer flow. In [81], in an analysis of a probe at the critical point of a blunt
body in a subsonic flow of plasma in the boundary-layer regime, the unjustified {1, 82] as-
sumption that the diffusion is ambipolar in the quasineutral region was made. The case when
the plasma contains ions of many types and reactions occur was studied in [46] in connection
with the calculation of the saturation current on spherical and cylindrical probes in a sub-
sonic boundary-layer flow of a combustion-product plasma seeded with potassium or sodium.

On the basis of the model employed the presence of negative ions leads to quite appreciable
increase in the positive-ion saturation current.

4, Comparison of Theory with Experiment. Both the quantitative and qualitative com-
- parison of different apsects of the theoretical results mentioned in Sec. 3 with experimental
data have been performed many times in the literature (see the reviews [1, 2]; of subsequent
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works we call attention to [33, 34 40, 46, 48, 51, 54-57, 62, 64, 66-69, 74, 75, 77, 78,
83-93]). In most cases the agreement between theory and experiment was reasonable. In par-
ticular, the quantitative accuracy is of the order of a factor of two.  We shall not give a
detailed comparison, but we call atteniton to two points.

In a number of works the theory was compared with the data obtained in experiments with
inert-gas plasma. In such a plasma the parameter § is very small (of the order of 107%).
The quantity ), even under atmospheric pressure may not be too small, so that the first con-
dition of (3) often does not hold. On the other hand, the region of parameters in which
the second condition of (3) and the condition Vea € Vgp hold simultaneously is often quite
narrow. For example, for an argon plasma at atmospheric pressure, T = 2:10% K, o = 10°! em
the mean-free path length of the electrons is of the order of 10-2 cm, Ay ~ 1 cm, and the
condition Ay « A does not hold. The condition (A/A)2? « Vee/Ven < 1 holds for 10'! cm™? «
ng « 10'* cm™3. Thus, in the case ng s 10! cm™? the hydrodynamic formulation of the prob-
lem under these conditions is, generally speaking, not applicable; in the case ng 2 10'3
cm™? the hydrodynamic formulation is possible, but the electron-ion collisions must be taken
into account; in the case ng ~ 10!'2 cm”® the formulation of Sec. 2 can be used, but the theo-
retical results mentioned in Sec. 3, which do not take into account the separation of the
electron temperature, are not valid. Works devoted to the theory of probes for these cases
have been published. For the first case we call attention to [94]. Some works referring to
the second and third cases are cited in [1], and for the second case we also call attention
to [95-98]. On the whole, however, the present status of the theory for these conditions
is appreciably lower than for a weakly ionized plasma with an equilibrium function £f°. For
this reason, in order for the quantitative comparison with the experimental results for

inert-gas plasmas in a wide range of conditions to be methodically correct, the theory must
be further developed for the indicated cases.

In a significant number of works the theory was compared with data obtained in experi-
ments with a combustion-product plasma with an alkaline additive. Because of the large
values of the transport cross sections and cross sections of inelastic collisions of elec-
trons with H,0 and CO, molecules the lengths A and Ay in such a plasma are usually short
(for example, at atmospheric pressure and T = 2000 K: A ~ 10-% cm, Ay ~ 1073 cm) and the
conditions for the applicability of the theoretical results mentioned in Sec. 3 hold. On
the other hand, the difficulties in performing probe experiments in a high-energy flow of
a combustion-product plasma are surmountable [91, 99-101]. 1In the last few years, however,
in connection with measurements of the binding energy of the negative ions HCO,;~ [102], a
suspicion has appeared that taking into account these ions could substantially affect the
interpretation of the IVC, in particular, the positive-ion saturation current [46]. One
must hope that this important question will be clarified in the near future.

5. Conclusion. Diagnostic Methods. Three diagnostic methods, based on the use of
the linear section of the IVC or the section of current of positive particles or the
values of the saturation current of the positive particles follow from the foregoing dis-
cussion. Apparently the first method is the simplest one in many cases. Indeed, the formu-
la (10) permits determining o directly from the slope of the linear section of the IVC mea-
sured in the experiment. In so doing it is not necessary know the exact values of the trans-
port and kinetic coefficients of the plasma. After o, is determined New can be found if
necessary, for which, of course, one must know He- We call attention to the fact that this
method is related with the electrode method for determining the conductivity of a plasma,
which is based on measuring the IVC of the gap between two electrodes placed in a plasma
[100, 103, 104]. On the other hand, none of the difficulties, associated with taking into
account the voltage drop in the layers near the electrodes and the uncertainty of the con-
figuration of the discharge, that arise in the electrode method appear in the method under
study. A scheme enabling the use of such a method for monitoring the conductivity of a plas-
ma directly during the course of an experiment is described in [40] (see also [93]). On the
whole, however, this method has not been adequately tested yet.

In the case when the plasma contains ions of only one type while ionization and recom-
bination are frozen, the second and third methods also can be quite easily implemented,
often in the form of explicit formulas relating the expression for the section of the cur-
rent of positive particles or the magnitude of their saturation current to ng.. We note
that the values of the transport coefficients of the plasma, required for determining ngw
with the help of these formulas, can in many cases be calculated with acceptable accuracy
(with an error not exceeding ~10%Z [16]). For a multicomponent, chemically active plasma
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these methods are much more complicated and they require that the kinetics of ionization
and recombination in the region near the probe be taken into account. The existing infor-
mation regarding this question is often inadequate. For this reason in this case these
methods are of limited use for determining the charged-particle density in an undisturbed

flow.

On the other hand, they can be employed to study the indicated kinetics.
I thank I. A. Vasil'eva and G. A. Dyuzhev, who suggested that this review be written,

for their atteniton to and a discussion of this work and G. V. Naidis and B. V. Rogov for
useful discussions.
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