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Abstract
A new class of stationary solutions in the theory of glow discharges and plasma–cathode
interaction in ambient-gas arc discharges has been found over the past 15 years. These
solutions exist simultaneously with the solution given in textbooks, which describes a
discharge mode with a uniform or smooth distribution of current over the cathode surface, and
describes modes with various configurations of cathode spots: normal spots on glow cathodes,
patterns of multiple spots recently observed on cathodes of glow microdischarges and spots on
arc cathodes. In particular, these solutions show that cathode spots represent a manifestation of
self-organization caused by basic mechanisms of the near-cathode space-charge sheath;
another illustration of the richness of the gas discharge science. As far as arc cathodes are
concerned, the new solutions have proved relevant for industrial applications. This work is
dedicated to reviewing the multiple solutions obtained to date, their systematization, and
analysis of their properties and physical meaning. The treatment is performed in the context of
general trends of self-organization in bistable nonlinear dissipative systems, which allows one
to consider glow discharges or arc–cathode interaction within a single physically transparent
framework without going into mathematical details and offers a possibility of systematic
computation of the multiple solutions. Relevant computational aspects and experimental data
are discussed.

Keywords: gas discharges, electrodes of gas discharges, electrode spots, patterns of spots,
glow discharges, arc cathodes

(Some figures may appear in colour only in the online journal)

1. Introduction

Self-consistent theoretical models of dc glow discharges
and plasma–cathode interaction in arc discharges in ambient
gas, including the most basic ones, admit multiple solutions
existing for the same discharge current. One of these solutions
is in the simplest case one-dimensional (1D) and describes
states with a uniform distribution of current over the electrode
surface. In the case of glow discharges between parallel
electrodes, the 1D solution describes the Townsend discharge

for very low current densities, the abnormal discharge for
high current densities, and the unstable discharge with a
falling current density–voltage characteristic (CDVC) for
intermediate current densities; this solution is similar to the
classic solution which is based on a linear approximation
of electric field in the near-cathode space-charge sheath
and is given in textbooks (e.g. [1, section 8.4.2] and [2,
section 14.3]). In the case of arc–cathode interaction, the
1D solution describes the diffuse mode of current transfer
and is similar to the solution which for high-pressure arcs
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is considered in [3, section 4]. The other existing solutions
are in all the cases multidimensional and describe modes with
different configurations of cathode spots.

The existence of multiple solutions was hypothesized in
1963 for arc–cathode interaction [4] and derived in 1988 for
glow discharges [5]; further references of historical interest can
be found in [6, section 3.1] and [7], respectively. However, the
central role of multiple solutions was fully realized only in the
late 1990s in the theory of arc plasma–cathode interaction. By
now, solutions describing diffuse and spot modes of current
transfer to cathodes of high-pressure arc discharges have been
computed under different conditions by different research
groups and validated by an extensive comparison with the
experiment. Most of the effort was invested in investigation
of low-current high-pressure arcs, which are used in high-
intensity discharge lamps. Multiple solutions in the theory
of glow discharges have started to be systematically computed
and validated experimentally only recently.

Although the physical mechanisms of plasma–cathode
interaction in dc glow and arc discharges are very different,
the overall patterns of multiple solutions turned out to be
remarkably similar. Of course, this is not surprising: in
terms of general theoretical physics, cathodic parts of both
discharges represent bistable nonlinear dissipative systems;
cathode spots represent self-organization phenomena. Hence,
solutions describing the spots must conform to general trends
of self-organization in bistable systems. This allows one
to understand multiple solutions in the theory of glow and
arc cathodes and different spot patterns described by these
solutions within the same framework.

These solutions are important also beyond their usefulness
for understanding and modeling cathode spots in dc discharges.
The fact that the model of dc glow discharges between parallel
electrodes, which is the workhorse of the gas discharge
theory and modeling, admits a new class of multidimensional
solutions and these solutions are of physical relevance is by
itself surprising and theoretically interesting. These solutions
add to understanding of the physics contained even in simple
gas discharge equations; another illustration of the richness
of the discharge science. Furthermore, understanding of these
solutions may also be important in apparently simple situations
where multiple solutions are not of primary concern.

The latter point may be illustrated by the following
example [8]. In figure 1, current–voltage characteristics
(CVCs) are shown of a dc glow discharge between parallel
electrodes calculated in the framework of a simple drift–
diffusion model. The solid line refers to the case where the
lateral surface of the discharge vessel reflects the ions and
the electrons, in which the discharge is described by the 1D
solution (all parameters vary only in the axial direction). The
dashed line refers to the case where the lateral surface absorbs
the ions and the electrons, so the solution is axially symmetric
(two-dimensional, 2D). The 2D solution is close to the 1D
solution in the Townsend and abnormal regimes; however, at
intermediate currents it describes the subnormal and normal
modes rather than the mode associated with the falling section
of the CVC. Note that the only new effect in the 2D solution
is diffusion of the charged particles to the (absorbing) wall.

Figure 1. Computed CVCs of the glow discharge. 1D: reflecting
lateral surface; 2D: absorbing lateral surface; Xe plasma,
p = 30 Torr, the discharge radius 1.5 mm and height 0.5 mm.
Adapted from [8].

This effect is weak: the ratio of the electron current to the
wall to the discharge current, evaluated with the use of the
2D solution, is of the order of 10−3 or lower at all discharge
currents. Then a question arises as to how this weak effect
originates such a large difference, in particular, where from
have the subnormal and normal modes appeared and where to
has the mode associated with the falling section of the CVC
gone. Identification and understanding of multiple solutions
are indispensable in answering this question.

This work is dedicated to a review of multiple
solutions in the theory of dc glow discharges and plasma–
cathode interaction in arc discharges obtained to date, their
systematization, and analysis of their properties and physical
meaning. The outline of the paper is as follows. In section 2,
the concept of multiple solutions in the theory of dc glow
discharges and plasma–cathode interaction in arc discharges
is formalized and properties of these solutions are analyzed on
the basis of general trends of the theory of self-organization
in bistable nonlinear dissipative systems. Relevant aspects
of computation of these solutions are discussed in section 3.
Typical results of calculations of multiple solutions are shown
and compared with trends observed in the experiment in
section 4. Topics discussed in section 5 include the following:
transition from self-organized modes of current transfer to
modes where current spots represent concentrations of current
caused by non-uniformities of geometrical and/or physical
properties of the cathode surface; solitary cathode spots; role
of Steenbeck’s principle of minimum power in modern theory
and modeling; examples of apparently simple situations where
glow discharges or arc–cathode interaction reveal complex
behavior; observations of spots and patterns on electrodes of
gas discharges and the first-principles theory and modeling
where available. The place of the approach based on multiple
steady-state solutions in the theory and modeling of gas
discharges and possible directions of future work are briefly
discussed in section 6.
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Figure 2. Geometry admitting a 1D solution; (a) glow discharge and (b) cathode of an arc discharge.

2. Theory of multiple solutions

2.1. Mathematical formulation

The concept of multiple solutions in the theory of dc glow
discharges and the cathodic part of arc discharges may be
formalized as follows. It is convenient to consider first a
discharge with parameters varying in the direction along the
electric current but not in transversal directions and then
gradually move to configurations of practical interest; it is
in this way how the multiple solutions have actually been
understood and computed. Appropriate geometry for the case
of a glow discharge is shown in figure 2(a): a discharge in a
tube with parallel electrodes and without recombination of the
charged particles at the lateral wall (i.e. with the wall reflecting
the charged particles). The z-axis of the Cartesian coordinates
(x, y, z) is parallel to the electric current. Differential
equations governing glow discharges are well known and
comprise equations of conservation and transport of the ions
and the electrons, the Poisson equation, and other relevant
equations such as equations of conservation and transport of
excited neutral species and the electron energy equation. In the
configuration being considered, these equations supplemented
with the appropriate boundary conditions admit a 1D solution
describing states in which plasma parameters vary across the
discharge gap but not in the transversal directions: f = f (z).
This solution is exemplified by the solid line in figure 1 and
is similar to the classic solution given in textbooks; e.g., [1,
section 8.4.2] and [2, section 14.3].

In the case of an arc discharge, the computation
domain includes not only the plasma but also the electrodes,
where distributions of the temperature and, in some cases,
electrostatic potential need to be computed. However, this
paper is concerned with the cathodic part of the discharge, and
this allows us to reduce the computation domain exploiting
the fact that a very substantial electric power is deposited
by the arc power supply into the near-cathode space-charge
sheath, which is why the energy flux to the cathode surface is
generated in a very thin near-cathode plasma layer comprising
the space-charge sheath and the adjacent ionization layer.
The plasma–cathode interaction is, to the first approximation,

unaffected by the arc column and governed by the boundary-
value problem, which comprises multidimensional differential
equations of heat conduction and current continuity in the
cathode body coupled through boundary conditions with a
system of transcendental equations describing current transfer
through the near-cathode layer. This approach is sometimes
called the model of nonlinear surface heating and was proposed
for the first time apparently in [4]; more recent versions are
described in [6] and references therein. Appropriate geometry
is shown in figure 2(b): the cathode has the shape of a
right cylinder; the lateral surface is thermally and electrically
insulated, so the energy flux and the electric current from the
plasma enter the cathode through the front surface (the upper
end of the cylinder in figure 2(b)); the base of the cathode
is externally cooled. Again, the governing boundary-value
problem admits a 1D solution describing states in which the
temperature and potential vary in the direction from the front
surface to the base of the cathode but not in the transversal
directions: f = f (z). This solution is similar to the one
considered in [3, section 4].

The above-discussed 1D solution in both cases of glow
discharge and arc cathode describes a mode with a uniform
current distribution along the cathode surface, i.e. the spotless,
or diffuse, mode. The question is: do the same equations in the
same geometry and with the same boundary conditions admit
also multidimensional solutions, f = f (x, y, z)? If they do,
will such solutions have physical meaning, in particular, will
they describe modes with cathode spots?

Although 2D and three-dimensional (3D) nonlinear
boundary-value problems are solved numerically as a matter
of routine nowadays, finding multiple solutions is a non-trivial
task which can hardly be solved by purely computational
means. A rule of thumb says that if iterations in a nonlinear
multidimensional problem with multiple solutions converge
painlessly, then the converged solution is likely to be not the
one being sought. Sufficient qualitative information must be
available in advance in order for all relevant multidimensional
solutions to be computed; in the first place, one needs
to know what the multidimensional solutions are like and
where to look for them. (Of course, such information will
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Figure 3. Schematic of CVCs of the glow discharge and the
cathodic region of the arc discharge described by different solutions;
solid: 1D solution (spotless mode); dashed: multidimensional
solutions (spot modes); circles: bifurcation points.

also facilitate analysis of computation results.) This can
be achieved by invoking the theory of self-organization in
nonlinear dissipative systems. The route from general ideas
of the theory of self-organization to computation of multiple
solutions describing particular dc discharges is traced in the
following sections.

2.2. Deriving properties of multiple solutions from general
trends of self-organization in bistable nonlinear dissipative
systems

The CVC of the spotless mode of the glow discharge under
conditions of figure 1 includes, in addition to the branch
depicted by the solid line, a branch that corresponds to no
discharge being ignited and represents a section of the voltage
axis from zero up to approximately 175 V (the breakdown
voltage). This CVC is schematically shown by the solid line
OAEF in figure 3. (Here j is the density of electric current
from the plasma to the cathode surface and 〈j〉 is the average
density of current to the cathode surface. For brevity, 〈j〉 will
also be referred to as the discharge current.) Note that section
OA in figure 3 is moved away from the axis of voltages for
illustrative reasons.

It will be seen later that the line OAEF schematically
represents the CVC of the spotless mode also in the case of the
arc cathode, provided that U , while designating the discharge
voltage in the case of the glow discharge, designates the near-
cathode voltage drop in the case of the arc cathode. Thus, the
line OAEF in figure 3 may be viewed as a prototypical CVC
of the spotless mode in the cases of both glow discharge and
arc cathode. Since j = 〈j〉 for the spotless mode, this line also
represents the CDVC of the spotless mode.

The CDVC OAEF has a characteristic shape resembling
the letter N , which is typical of a bistable system. A
characteristic feature of bistable systems is the presence of a
strong positive feedback; it is this feedback that gives rise to the

Figure 4. The cathode sheath instability mechanism.

falling section of the N -shape (section AE in figure 3). The
positive feedback in the considered system originates in the
near-cathode space-charge sheath. The relevant mechanism,
which may be called the cathode sheath instability, may be
described in the same terms for both glow and arc cathodes as
illustrated by figure 4. Of course, the emission of electrons by
glow (cold) and arc (hot) cathodes is of a different nature:
secondary electron emission versus thermionic/thermo-field
emission. (One of the consequences is different efficiency
of ion bombardment: the number of electrons emitted per
incident ion is typically of the order of 10−2–10−1 for glow
cathodes and of 1–10 for arc cathodes.) Among other things,
this difference results in different interpretations of the positive
feedback in the mechanism shown in figure 4: in the case
of the glow discharge, the positive feedback originates in an
increasing dependence of the Townsend ionization coefficient
on the electric field, while the positive feedback in the case
of the arc cathode originates in an increasing dependence of
the density of the energy flux from the plasma to the cathode
surface on the surface temperature [9].

Let us denote by U0 a value of the voltage U somewhere
between the values corresponding to the maximum and
minimum points of the CDVC: UE < U0 < UA. Three
1D solutions exist for U = U0, as shown in figure 3. The
states described by the solutions with the lower and higher
current densities, j = j1 and j = j3, are expected to be
stable and will be referred to as the cold and hot phases,
respectively. The state described by the 1D solution with the
intermediate current density, j = j2, is expected to be unstable.
One can also think of multidimensional solutions existing for
U = U0 which would describe states in which a part of the
cathode is occupied by the cold phase and the other part by
the hot phase; there is also an intermediate region separating
the two phases, which is shown in figure 5 and is frequently
called the domain wall. Of course, coexistence of phases is
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Figure 5. Current density distribution over the cathode surface
characteristic for coexistence of phases.

only possible if width W of the cathode, i.e. its characteristic
dimension in the directions perpendicular to z, is much larger
than the characteristic width L of the domain wall shown in
figure 5. (In the case of the glow discharge, one can speak not
of the cathode width but rather of the width of the discharge
tube, which is equivalent; see figure 2(a).) With a reduction in
W , the form of multidimensional solutions deviates from that
with the coexistence of phases shown in figure 5, the range of
their existence shrinks, and starting from a certain value of W

the multidimensional solutions cease to exist.
Switching from the spotless mode to a mode with spot(s)

is a result of development of an instability of states belonging
to the spotless mode with respect to multidimensional
perturbations. The expected pattern of instability is as follows.
States corresponding to the rising section EF of the CDVC of
the spotless mode (figure 3) are usually stable. As the current
decreases into the range corresponding to the falling section
AE, multidimensional perturbations of one mode (let us call
this mode the first one) start growing. Let us denote the state
at which this happens by a1. The real part of the increment of
perturbations of the first mode vanishes at a1, so the increment
is either zero or imaginary. If the former is the case, then the
perturbations of 1D states belonging to the beginning of the
section a1A grow in time monotonically. If the latter is the
case, then the perturbations grow in an oscillatory way.

It is known from the experiment that the transition from the
abnormal discharge on a glow cathode to the normal discharge
is monotonic in time; in particular, there are no oscillations of
luminosity of the cathode surface. The diffuse-spot transition
on arc cathodes is monotonic as well. Hence, it should be
expected that the increment of the first-mode perturbations
at the state a1 is zero. In other words, multidimensional
perturbations of the first mode are stationary at the state a1.
The latter means that a steady-state multidimensional solution
branches off from the 1D solution at this state. In other words,
the state a1 belongs simultaneously to the 1D solution and
to another steady-state solution which is multidimensional at
states other than a1. This phenomenon, called bifurcation,
or branching, of solutions, is well known in mathematical

physics and frequently occurs in nonlinear systems possessing
symmetries.

The rising section OA is stable, hence the first-mode
perturbations return to being decaying somewhere between
the states a1 and A. Let us denote the state at which this
happens by b1. It seems natural to assume that the steady-
state multidimensional solution, which branches off at the state
a1, rejoins the 1D solution at the state b1, as shown by the
dashed line a1b1 in figure 3. Note that this reasoning may
seem to contradict the well-known experimental fact that the
loss of stability of the Townsend discharge may be oscillatory;
e.g. [10–17] and references therein. However it does not,
since stability in the vicinity of the maximum A of the CDVC
and minimum E may be broken by perturbations of different
modes. In other words, one should not be surprised that, while
all states of the section Ea1 are stable, some states of the
section Ab1 may be unstable against oscillatory perturbations,
as indicated by the above-mentioned experimental fact.

In addition to a1b1, other steady-state multidimensional
solutions which branch off from and rejoin the 1D solution may
exist. The number of such solutions increases with increasing
cathode width. Two of these solutions are exemplified by
the lines a2b2 and a3b3 in figure 3. The order of rejoining
of different solutions is usually inverse to the order of their
branching-off, i.e. the solution a2b2 is the second to branch
off and the last but one to rejoin, and so on.

Furthermore, there may be multidimensional solutions
that branch off from the 1D solution not directly but rather
through two or more sequential bifurcations; e.g. a2,1b2,1 in
figure 3. In other words, one can expect that there are several
‘generations’ of solutions. The 1D solution represents the
first generation. Multidimensional solutions of the second
generation (a1b1, a2b2, a3b3 in figure 3) are those that branch
off from the 1D solution. Note that the corresponding
bifurcations (those occurring at states ai and bi) are called
primary. Multidimensional solutions of the third generation
(a2,1b2,1 in figure 3) branch off from solutions of the second
generation through secondary bifurcations (those occurring at
states a2,1 and b2,1), etc.

Thus, we come to the conclusion that multidimensional
solutions exist if the cathode is sufficiently wide; if they exist,
some of them branch off from the 1D solution and rejoin it
through bifurcations occurring on the falling section of the
CDVC described by the 1D solution; other multidimensional
solutions bifurcate from the 1D solution not directly but rather
through a chain of sequential bifurcations.

An important particular case is the one where the
calculation domain (the glow discharge tube or the body of the
arc cathode) represents a right circular cylinder. It is natural
in this case to use cylindrical coordinates (r, φ, z) with the
origin at the center of the cathode surface. Solutions of the
second generation are either axially symmetric (2D) or 3D
with an arbitrary azimuthal period (2π , or π , or 2π/3, or
π/2, etc). Note that what branches off at a given primary-
bifurcation point is not a single 3D solution but rather a
continuum of solutions differing by azimuthal orientation of
the spot arrangement; however, the term ‘solution’ will be used
for brevity.
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Secondary bifurcations can occur on 2D solutions and
every other 3D solution of the second generation, i.e. on
3D solutions with one of the periods π , π/2, π/3, π/4,
etc. In both cases, the bifurcating third-generation solution
is 3D. In the former case, its period may be arbitrary. In
the latter case, its period equals double the period of the
second-generation solution from which it bifurcates; the so-
called period-doubling bifurcation. Note that figure 3 may be
viewed as an example of the situation where a third-generation
solution with azimuthal period 2π (a2,1b2,1) branches off from
a second-generation solution with the period π (a2b2). Thus,
all solutions of the third and subsequent generations are 3D and
all tertiary and subsequent bifurcations are period-doubling.

A detailed analysis of bifurcations in the considered
problem can be found in [8, 18] for the glow discharge and
[8, 9, 19] for arc cathodes.

2.3. Solutions describing regimes with normal spots

An important limiting case is the one where W the width of
the cathode (we recall that in the case of a glow discharge
it coincides with the width of the discharge tube) is much
larger than the characteristic length scale L of the domain wall
separating the cold and hot phases. A mathematical theory
for this case is developed in [20]. A CVC described by the
first multidimensional solution (the one shown in figure 3 by
the line a1b1) in this case is depicted by the line a1GHb1 in
figure 6. As L/W becomes smaller, the bifurcation point a1

comes nearer to the point of minimum E of the CDVC of the
spotless mode; the bifurcation point b1 comes nearer to the
point of maximum A; the section HG becomes closer to the
horizontal line U = U0; the sections a1G and b1H become
closer to the sections EM and AK , respectively.

The distribution of the current density over the cathode
surface described by the first multidimensional solution
evolves in the region of existence of this solution as follows.
At the state a1, this distribution is uniform. In the beginning
of the section a1G, the uniformity is broken and a cold domain
surrounded by a hot phase (that is, a small region with the
current density lower than that in the surrounding zone) begins
forming. As the vicinity of the state G has been reached, the
current density in this domain falls down to the value j1 and the
current density in the surrounding region occupied by the hot
phase increases to j3. On the section GH , the region occupied
by the cold phase expands and the region occupied by the
hot phase shrinks, the current densities in these regions being
nearly constant and equal to j1 and j3, respectively. These
are regimes with coexistence of phases shown in figure 5 or, in
other terms, regimes with a normal spot. At the state H the cold
phase occupies the whole cathode surface except for a small
region (a current spot). This current spot vanishes gradually on
the section Hb1 and the current distribution regains uniformity
at the state b1.

The above-described features characteristic for the case
of small L/W are also present in the second and third
multidimensional solutions (the ones shown in figure 3 by
the lines a2b2 and a3b3); however, they are successively
less pronounced. In particular, the horizontal section of the

Figure 6. Schematic of the CVC of a mode with a normal spot.

CVC, which corresponds to the regime of coexistence of
phases and for the first solution is represented by the segment
HG in figure 6, is successively shorter and more inclined.
The reason is clear: higher order multidimensional solutions
describe modes with several spots, and as the number of spots
increases, the cathode area per spot becomes smaller and
the asymptotic features become less pronounced. High-order
multidimensional solutions, which describe modes with many
spots and are not shown in figure 3, do not manifest these
features at all.

The coexistence of phases typically occurs only at a certain
value of the control parameter, in this case, of the voltage
drop U0. This value is independent of W and governed by
a condition of solvability of a planar boundary-value problem
governing the domain wall. Such solvability conditions are
known as Maxwell’s constructions; e.g. [21]. A derivation
of an explicit form of Maxwell’s construction for a particular
problem is not a simple task. In the problem considered, an
explicit form of Maxwell’s construction or, in other terms,
an explicit condition governing the normal voltage has been
derived for arc cathodes [9, 20, 22] but not for glow discharges.

The evolution of the current density distribution from
smooth (harmonic) in the vicinity of the states a1 and b1 to
spot-like at states G and H is described in [20], as well as
the interaction of a normal spot with lateral boundaries and/or
other spots (in particular, this interaction is responsible for
the correlation between the shape of the normal cathode spot
in glow discharges and the shape of the discharge tube cross
section). The difference U −U0 in regimes with a normal spot
is exponentially small, hence the corresponding section of the
CVC (section HG in figure 6) is close to the horizontal line
even if the ratio L/W is not very small.

In the problem considered, the domain wall separates the
normal spot from the surrounding current-free region and its
characteristic length scale L is represented by the thickness of
the near-cathode space-charge sheath in the case of the glow
discharge and by the cathode height in the case of the arc
cathode. The thickness of the sheath is in many cases much
smaller than the radius of the discharge tube, therefore regimes
with normal spots on glow cathodes are usual. In contrast,
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thermionic cathodes of high-pressure arcs are in many cases
thin rather than wide and regimes with normal spots usually
do not occur.

2.4. Different physical mechanisms or multiple solutions?

Many authors have tried to explain the existence of different
modes of current transfer to electrodes of gas discharges
as a manifestation of different physical mechanisms. For
example, thermionic versus thermo-field or field mechanisms
of emission of electrons by the cathode surface were invoked
to explain spots and the diffuse mode on cathodes of high-
pressure arcs; e.g. [23–25]. The authors [26–28] considered
that the basic mechanisms of a glow discharge are insufficient
to explain spot patterns observed in glow microdischarges
and additional mechanisms are needed, such as an increasing
dependence of the effective secondary emission coefficient on
the reduced electric field and heating of the gas. Furthermore,
it was suggested that the regular arrangement of the developed
spots (filaments) may be explained by assuming a balance of
electrostatic forces: the positive charge of the cathode fall in
one filament is subject to repulsive forces from other filaments,
which are balanced by electrostatic forces due to surface
charges deposited on the surface of the surrounding dielectric
spacer.

We will not discuss here the relevance of particular
mechanisms proposed in the above-cited works. Rather,
we stress that different modes of current transfer are not
necessarily a manifestation of different physical mechanisms:
if a spot or pattern is unrelated to non-uniformities of
the electrode surface, then it is a manifestation of self-
organization. Hence, an adequate theoretical model should
admit multiple solutions which exist at the same discharge
current and describe a spotless mode and mode(s) with spots
or patterns. What is really needed in the model is a positive
feedback strong enough so that the CDVC of the spotless
mode be N -shaped under conditions of interest, and usual
mechanisms of near-cathode space-charge sheath illustrated
by figure 4 are sufficient to this end.

3. Computation of multiple solutions

3.1. Straightforward approach

Suppose that one needs to compute a solution describing a
mode with, say, a spot at the center of the cathode (or with
a ring spot, or with two spots at the edge and so on). If
an appropriate multidimensional code simulating a dc glow
discharge or cathodic part of a high-pressure arc discharge is
available, one can try to proceed in a straightforward way: to
specify an external circuit, to choose an initial state resembling
the desired solution, and to start the code.

Papers reporting multiple solutions obtained by means of
such a straightforward approach exist, but are few. Axially
symmetric current transfer to a cylindrical arc cathode was
modeled in [29]. A unique solution was found for a cathode
geometry corresponding to experimental conditions; however,
two solutions were found in a certain current range for a
wide cathode, one of these solutions describing the diffuse

mode and the other the spot mode. The simplest axially
symmetrical patterns on glow anodes (a single spot, a central
spot surrounded by a ring spot) have been computed in [30].
Steady-state solutions with one or two filaments, depending on
the initial conditions, have been obtained in time-dependent
modeling of a planar glow discharge [31]. Steady-state
solutions with filaments have been obtained in planar time-
dependent modeling of the cathode layer of a non-self-
sustained glow discharge in the subnormal regime [32] and
of a thin glow discharge sandwiched with a semiconductor
layer under cryogenic conditions [33]. The formation of
self-organized anode patterns in a dc atmospheric-pressure
free-burning arc discharge was successfully simulated in
[34, 35]. In most cases, the reported solutions refer to just one
current value or to a narrow current range. The full region of
existence of each solution was not explored in any of the works.

These examples show that the straightforward approach
to computation of multiple solutions in the theory of dc glow
discharges and the cathodic part of arc discharges can succeed.
As the pattern of multiple solutions and of their stability
becomes more clear, the rate of success of this approach will
certainly increase. On the other hand, it is desirable to develop
also an approach that will allow one, at least in principle,
to compute all steady-state solutions existing in a particular
problem in a systematic way. Such an approach is considered
in the next section.

3.2. Systematic approach

3.2.1. The idea There are two difficulties that one should
overcome in order to be able to compute multiple solutions in
a systematic way. First, one needs to know in advance that the
particular solution being sought does exist under conditions
specified. Indeed, if in the framework of the straightforward
approach the code has returned a steady-state solution which
is not the one being sought or has failed to return any solution,
one will not know whether this is a numerical problem or the
solution being sought does not exist for the external circuit
specified, or maybe does not exist at all for the discharge
conditions being considered.

Second, steady-state solutions in gas discharge physics are
virtually universally computed by means of time-dependent
codes: an initial state of the discharge is specified and its
evolution over time is followed until a steady state has been
attained. Such codes can compute only those steady states
which are stable for the specified external circuit against
perturbations having the symmetry to which the code is
adjusted. It should be stressed that this kind of stability
is not equivalent to physical stability: for example, a time-
dependent code may fail to find a steady state which can
be observed in a current-controlled discharge if the ballast
resistance specified in the modeling is not sufficiently high;
a steady state found by an axially symmetric time-dependent
code may be unstable against 3D perturbations (which are
usually the most dangerous ones).

Furthermore, even if the above-described kind of stability
were equivalent to physical stability, difficulties would arise
when this approach is applied in practice. A steady-state
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multidimensional solution is in many cases unstable in the
vicinity of the bifurcation point where it branches off, but is
stable beyond this vicinity; e.g. [6, figure 10]. Furthermore,
stable and unstable sections of the same mode may alternate;
see, e.g., [36, figure 1] for glow discharges and [37, figure 7]
for arc cathodes. This impedes computing stable sections in
a systematic way without computing also unstable sections.
And even if a systematic computation of only stable steady
states were possible, it would produce a fragmentary picture:
a patch of solution here and another there, and one would be
unable to understand the overall pattern. In fact, one would
have difficulties even in identifying patches belonging to the
same mode.

In more general terms, the pattern of multiple solutions
may be complex enough and the pattern of their stability is
still more complex, especially in the case of glow discharges;
hence, one would prefer to decouple computation of steady-
state solutions and analysis of their stability.

The above difficulties can be overcome in the following
way. The bifurcation analysis can be employed in order to
find which steady-state solutions exist and what is the region
of existence of each one. The computation of steady-state
solutions and the analysis of their stability can be decoupled
by resorting to a steady-state solver (i.e. a one which computes
a solution of discretized steady-state equations by means of an
iteration process which is not equivalent to relaxation in time):
one will first use a steady-state solver in order to compute
all steady states which constitute a given solution (mode)
regardless of whether each particular state is stable or unstable
for some or the other external circuit, and study the stability of
each state at a later stage.

3.2.2. Procedure. The modeling starts in the framework
of a model of the particular discharge which, while being
multidimensional, admits a 1D solution, as shown in figure 2.
The first step consists in computing the 1D solution. If the
CDVC described by this solution is N -shaped under conditions
of interest, then one can hope that the mechanisms accounted
for in the model are indeed sufficient for the model to admit
multidimensional solutions describing modes with spots. If the
CDVC is of another shape, e.g. monotonically growing, this
is an indication that no multidimensional solutions probably
exist and the only existing solution is 1D and describes the
spotless mode.

The second step consists in finding points of primary
bifurcations, i.e. 1D states where the increment of multi-
dimensional perturbations of any mode vanishes. If the
analysis has shown that the increment of multidimensional
perturbations of a given mode is non-zero for all 1D states on
the falling section of the CDVC, then the corresponding steady-
state multidimensional solution may not exist. If there are
no bifurcations of any multidimensional perturbations (which
happens if the cathode is very thin), this is again an indication
that the only solution existing under the considered conditions
is 1D and describes the spotless mode.

Steady-state multidimensional solutions branching off
from the 1D solution are computed in the third step. The
computation of each solution starts at a value of the control

parameter for which the solution for sure exists; it can be a
value corresponding to the vicinity of one of the bifurcation
points or any value between the bifurcation points. (The
control parameter may be U , i.e. the discharge voltage in the
case of the glow discharge and the near-cathode voltage drop
in the case of the arc cathode; or discharge current I ; or one
of the parameters of the external circuit.) Then the solution is
extended, by gradually varying the control parameter and using
as an initial approximation the solution found for the previous
value of the control parameter, with the aim to compute all
steady states which constitute a given solution (mode) in the
whole region of existence regardless of their stability.

After the second and third steps have been completed,
solutions of the second generation are known. If there
are reasons to believe that solutions of the third and next
generations exist and are of interest, as is the case of glow
microdischarges [38], then one can repeat these steps as
necessary, finding points of secondary bifurcations and third-
generation solutions, then points of tertiary bifurcations and
fourth-generation solutions, and so on.

Normally, one will be interested not in the simplified
discharge configuration shown in figure 2 but in a more realistic
one. Then the configuration is gradually changed from that
shown in figure 2 to the one of interest and the evolution of
each of the multiple solutions is followed; the fourth step.

The fifth step consists in the analysis of the stability of
the computed multidimensional solutions, with the aim to find
which states are stable and may realize in the experiment. Note
that this step is very important since each solution of a problem
with multiple solutions is usually unstable at least in a part of
its existence region.

The above approach allows one, at least in principle, to
compute multiple steady-state solutions and their stability in a
systematic way. Of course, the approach is laborious. On the
other hand, there is no need every time to perform the whole
procedure in full after the pattern of multiple solutions has been
found. For example, if one needs to compute a 3D spot pattern
in an axially symmetric geometry different from the one shown
in figure 2, then a first-guess shortcut is to compute the simplest
2D mode (the fundamental mode; see section 4.2) and, if its
CVC is N -shaped, to run a stationary 3D code somewhere on
the falling section of the CVC with an initial approximation
resembling the desired pattern. The technique of computation
of different 2D solutions for the case of the arc cathode without
previously finding bifurcation points is given in section 4 of
the tutorial of the tool [39].

3.2.3. Numerical aspects. From the point of view of
numerics, the first above-described step poses no difficulties.
In particular, steady-state 1D solutions describing current
transfer to cathodes of glow discharges have been computed by
many researchers in the framework of many different models
and physics behind these solutions has been generally well
understood. One should only ensure that the code being used
can compute steady states corresponding to the falling section
of the CDVC.

The second step is performed with the use of the formalism
of the linear stability theory. Multidimensional eigenvalue
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problems governing primary bifurcations admit separation of
variables and may be reduced to 1D eigenvalue problems.
In the case of an arc cathode, the latter problem admits an
analytical solution [9]. In the case of a glow discharge, the
latter problem can be readily solved numerically; a home-made
solver was used in [18] and an eigenvalue solver provided as a
part of commercial software COMSOL Multiphysics was used
in [8, 40]. 3D eigenvalue problems governing bifurcations of
3D solutions from axially symmetric ones admit separation
of variables and may be reduced to 2D eigenvalue problems,
which have been solved numerically by means of a home-made
solver [39, 41] (for arc cathodes) and an eigenvalue solver of
COMSOL Multiphysics [36, 40]. 3D eigenvalue problems
governing branching of 3D solutions have been solved for
arc cathodes by means of the eigenvalue solver of COMSOL
Multiphysics [8, 40].

The third step requires a multidimensional solver which
computes a solution of discretized steady-state equations
by means of an iteration process which is not equivalent
to relaxation in time. Good results have been obtained
with steady-state solvers based on the Newton linearization
with a direct solution of linear equations in finite elements
or differences, such as steady-state solvers of COMSOL
Multiphysics (e.g. [42–46]) or a home-made steady-state
solver used in [39, 47]. Note that such solvers indeed allow
one to decouple issues of numerical and physical stability;
for example, one can compute without any difficulty states on
falling branches of CVCs treating U as a control parameter,
i.e. without a ballast resistance required by time-dependent
solvers. Note also that steady-state solvers usually allow using
more refined meshes, which may be important, especially for
the glow discharges. Also used was the commercial finite-
element platform ANSYS [48–51].

Specifying an initial approximation for beginning of
calculation of a desired multidimensional solution is a
delicate point. A safe way is to begin in the vicinity
of a bifurcation point where the multidimensional solution
in question branches off from the 1D solution and use as
an initial approximation a superposition of the 1D solution
corresponding to the bifurcation point and a small harmonic
perturbation. In some cases the solver spontaneously
switches to the desired solution provided that the necessary
arrangements have been made, an example being computation
of solutions appearing through period-doubling bifurcations in
the modeling of a glow discharge [38].

Hints on calculation of multiple solutions on arc cathodes
are given in [6, section 3.3.2]. These hints are also applicable to
the calculation of glow discharges. It happens in the modeling
that iterations, having converged for one value of the control
parameter, fail to converge for the next value, however small the
increment of the control parameter is. Since a solution can turn
back or join another solution but cannot just disappear, such a
break-off represents a failure of the method. The most frequent
reason is that an extreme point of the CVC or a turning point has
been encountered: a code cannot pass through these points if
operated with, respectively, U or I as a control parameter. An
obvious fix is to switch the control parameter. It is essential,
therefore, that the code allows to make this switching in an

easy and seamless way. The second most frequent reason is
the numerical mesh being not fine enough. Another point
discussed in [6, section 3.3.2] concerns computation of 3D
solutions in axially symmetric calculation domains.

The fourth step may be performed by means of the same
solver as the third step.

An investigation of stability of steady states in the fifth step
may be performed by means of the formalism of the linear
stability theory. The arising multidimensional eigenvalue
problem may be solved numerically by means of an eigenvalue
solver of COMSOL Multiphysics [36, 52]; for the arc cathode
also analytical results are available [19]. Relevant aspects of
the use of the eigenvalue solver of COMSOL Multiphysics are
discussed in [36, 40] and references therein. An alternative
to the usage of the linear stability theory is to employ a time-
dependent code: the code is run with the initial condition being
the steady state in question on which a small perturbation is
superimposed, and the time evolution of the perturbation is
observed. This approach is significantly more demanding in
terms of CPU time. On the other hand, it allows one to follow
also the nonlinear stage of development of the instability.

A 2D simulation technique of arc plasma–cathode
interaction has reached a point where it can be automated.
A free online tool for simulation of multiple modes and
bifurcations of axially symmetric steady-state current transfer
to rod thermionic cathodes in high-pressure plasmas is
available on the Internet [39]. The tool is accompanied by
a tutorial that would help applied physicists and engineers
working in the field to make themselves comfortable with
multiple solutions describing different modes of current
transfer. The experience gained with the tool will facilitate
computing different modes of current transfer by means of
other tools, such as COMSOL Multiphysics or ANSYS.

4. Available results

4.1. Idealized geometry

Figure 7 depicts multiple steady-state solutions computed for
a glow discharge and plasma–cathode interaction in a high-
pressure arc discharge in the idealized geometry which admits
1D solutions and is shown in figure 2. Here R is the discharge
radius andh is the interelectrode distance in the case of the glow
discharge and R is the radius of the cathode and h is its height
in the case of the arc cathode. Each solution is illustrated by a
typical distribution of current density over the cathode surface
(red means the highest value and blue the lowest), which gives
an idea of the spot pattern associated with the mode of current
transfer described by this solution. Note that the spot pattern
varies with current, therefore images shown in figure 7 and
similar figures below are representative of some but not all
steady states described by the corresponding solution.

The line NP in figures 7(a) and (b) represents the CDVC
described by the 1D solution. (Note that the line NP in
figure 7(a) represents the same data as the solid line in
figure 1.) The current density distribution over the cathode
surface described by this solution is uniform; the spotless
mode. The CDVC is falling for 〈j〉 � 330 A m−2 and
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Figure 7. CVCs and schematics of current density distribution over
the cathode surface described by different steady-state solutions.
Geometry shown in figure 2. (a) Glow discharge, Xe plasma,
p = 30 Torr, R = h = 0.5 mm. Data from [7, 53]. (b) Cathode of
an arc discharge; Ar plasma, p = 1 bar, W cathode, R = 2 mm,
h = 10 mm. Adapted from [8].

I � 460 A, respectively, and growing for higher currents, i.e.
the CDVC depicted by the line NP is U -shaped. However,
this line represents not a full CDVC but rather just one branch
of it: the full CDVC also includes a branch corresponding to
the situation where no discharge is present. The latter branch
is described by the trivial solution of the considered problem:
the ion and electron densities are zero in the discharge tube and
the applied electric field is unperturbed in the case of the glow
discharge; the temperature in the cathode body is constant and
equal to that of the cooling fluid in the case of the arc cathode.
In the case of the glow discharge, this branch coincides with
the section of axis of voltages up to the breakdown voltage.
In the case of the arc cathode, this branch coincides with the
whole axis of voltages since the model being employed ([6]
and references therein) does not account for the possibility of

breakdown and the voltage U(j) given by the model infinitely
increases for small j .

In other words, the full CDVC includes not only the
(U -shaped) branch representing the characteristic of the
discharge itself, but also the branch coinciding with the axis of
voltages, or a part of it, and representing the situation where the
discharge has not been ignited. Thus, the full CDVC is similar
to the schematic OAEF in figure 3, the difference being that
the state A under conditions of figure 7 belongs to the axis
of voltages and in the case of the arc cathode is positioned
at voltages infinitely high. The full CDVC is thus N -shaped
rather than U -shaped.

In terms of section 2.2, the 1D solutions shown in
figures 7(a) and (b) by the line NP represent the first
generation. Multidimensional solutions of the second
generation branch off from the 1D solution at the bifurcation
points a1, a2, a3, a4, . . .. The positions of these bifurcation
points and the character of bifurcating solutions are related to
zeros of the derivatives of the Bessel function of the first kind
of different orders [8]. In particular, the solutions branching at
a1, a2, a4, a5, a7, a10, a13, a15 are 3D with azimuthal periods
of 2π , π , 2π/3, . . . , π/4, respectively, and typically describe
patterns with one to eight symmetrically positioned spots on
the periphery of the cathode. Other solutions with a period of
2π branch off at a6 and a12. Other solutions with periods of
π , 2π/3 and π/2 branch off at a8, a11 and a14, respectively.
Solutions branching off at a3 and a9 are 2D. In the case of the
glow discharge, the second-generation solutions rejoin the 1D
solution at the bifurcation points b1, b2, b3, b4, . . ., respectively.
Only some of the second-generation solutions are shown in
figures 7(a) and (b). Solutions shown in figure 7(a) are a1b1,
a3b3, a10b10 and a14b14, although the CVCs of the solutions
a10b10 and a14b14 are close to the line NP and are barely
visible. The solutions branching off at the points a1, a2, and a3

are shown in figure 7(b); however, the most part of the dashed
line Sa3Q representing the latter solution virtually coincides
with the line NP and only the section a3,2Q is visible.

The 2D solution that branches off at a3 and (in the case of
the glow discharge) rejoins the 1D solution at b3 comprises two
branches separated by the bifurcation point(s): branch a3Qb3

(or, in the case of the arc cathode, a3Q), associated with a spot
at the center of the front surface of the cathode, and branch
a3Sb3 (or, in the case of the arc cathode, a3S), associated with
a ring spot on the periphery.

The solutions described by lines a10b10 and a14b14 in
figure 7(a) are associated with many-spot patterns, which vary
with current, as shown in [53]. It is seen from figure 7(a) that
the plane (〈j〉, U) is not suitable for representation of these
solutions: their CVCs virtually coincide with that of the 1D
solution. Adequate and convenient are coordinates (〈j〉, jc),
where jc is the current density at the center of the cathode. (One
could also use the current density at a fixed point at the edge
of the front surface of the cathode instead of jc, as discussed
in [8].) This representation is used in figure 8. One can see
that different solutions are indeed clearly visible in this figure.

In the case of the glow discharge, CVCs described by the
first 3D solution a1b1 and by the central-spot branch a3Qb3

of the first 2D solution in figure 7(a) manifest a plateau,
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Figure 8. 1D solution and 8th and 12th 3D solutions. Geometry
shown in figure 2(a); glow discharge in Xe plasma, p = 30 Torr,
R = h = 0.5 mm. Data from [54].

similarly to the schematic shown in figure 6. These are regimes
with coexistence of phases or, in other terms, with normal
spots, illustrated by figure 5. The occurrence of these regimes
on glow cathodes but not on arc cathodes, revealed by the
numerical results, is a consequence of different aspect ratios
as discussed at the end of section 2.3. The multi-spot modes
a10b10 and a14b14 for the glow discharge do not reveal regimes
with normal spots, again in agreement with the discussion in
section 2.3.

Also shown in figures 8 and 7(b) are examples of 3D
solutions of the third generation. The dotted–dashed line
a14,1g14,1 in figure 8 represents a solution with the period
of π which branches off from the mode a14b14 through
period-doubling bifurcations occurring at states a14,1 and
b14,1. The dotted–dashed and two dotted–dashed lines in
figure 7(b) represent 3D solutions with azimuthal periods of,
respectively, π and 2π/3 which branch off from the 2D solution
Sa3Q through bifurcations occurring at states a3,2 and a3,3,
respectively. Note that the absence of a central spot in patterns
associated with the mode branching off at a3,3 is a consequence
of the bifurcation point a3,3 being positioned on the branch
without a central spot (a3S) of the 2D solution. It is interesting
to note also that no bifurcation of a 3D solution with a period of
2π was detected on the mode Sa3Q (it is for this reason that the
designation a3,1 is not used in figure 7(b)) and the bifurcation
point a3,2 coincides with the point of minimum of the CVC
Sa3Q [41].

The three dotted–dashed line in figure 7(b) depicts
a fourth-generation 3D solution with a period of 2π ,
which branches off from the above-described third-generation
solution with a period of π through a period-doubling
bifurcation occurring at state a3,2,1.

The period-doubling bifurcation that occurs at a14,1 and
b14,1 in figure 8 is accompanied by (or, as one can say, occurs
through) splitting of the central spot. The period-doubling
bifurcation that occurs at a3,2,1 in figure 7(b) occurs though a

change in the central spot as well: the central spot in the three-
spot configuration existing at a3,2,1 starts moving upwards and
this movement is accompanied by the extinction of the upper
peripheral spot and by an enhancement of the lower peripheral
spot, so the two-spot pattern shown in the image in figure 7(b)
appears.

Of course, patterns of stationary spots shown in figures 7
and 8 do not exhaust all possibilities. Some further examples
for glow discharges can be found in [38, 54]. In particular,
another scenario of period doubling may occur for patterns
with ring(s) consisting of an even number of spots: every other
spot in each ring becomes different from its neighbors. For
example, it can move in the radial direction; see states d1 and
A in [38, figure 10a], or states d2 and E in [38, figure 10b]
(note that states d1 and d2 of [38] are denoted a10,1 and a10,2

in designations of this work). Other possibilities are a shift in
the azimuthal direction and variations in brightness.

Most of the results for glow discharges available to date,
including those shown in figures 7(a) and 8, have been
computed in the framework of the simplest self-consistent
model, which accounts for a single ion species produced via
a single effective ionization process and employs the local-
field approximation. It is important to stress in this connection
that an account of detailed plasma chemistry and non-locality
of electron kinetics results in an increase in the number of
multiple solutions but does not change their pattern [38].

One can conclude that the pattern of computed multiple
solutions conforms to the one established theoretically in
sections 2.2 and 2.3. In particular, figures 7(a) and (b) are
qualitatively similar to the schematic shown in figure 3: there
are 2D and 3D solutions bifurcating from the 1D spotless mode
(second-generation solutions) and these bifurcations occur
on the falling section of the CDVC of the spotless mode;
3D solutions of next generations appear through sequential
bifurcations. A difference is that, while the second-generation
multidimensional solutions at low currents rejoin the 1D
solution in the case of glow discharges, they do not in the
case of arc cathodes. It is intuitively clear that this difference
originates in the voltage U(j) infinitely increasing for small j

in the model of arc–cathode interaction being employed and
will disappear if the account of glow-to-arc transition has been
introduced.

The reasoning of sections 2.2 and 2.3 is not rigorous,
hence one should not be surprised if its conclusions are not
completely correct in some cases. Indeed, it has been found [7,
section 3.2] that there is a narrow range of conditions of the
glow discharge where a second-generation 2D solution still
exists while the corresponding bifurcations on the 1D solution
have already disappeared; primary bifurcations in the case of
the glow discharge computed with diffusion of the charged
particles being neglected compared to drift may be positioned
on the beginning of the growing section of the CDVC (section
EF in figure 3) rather than on the falling section [18], [7,
section 3.3]. However, these cases are marginal; the theory
of sections 2.2 and 2.3 correctly describes the picture on the
whole and is accurate enough to be useful.
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4.2. Effect of lateral wall

The pattern of multiple solutions seen in figures 7 and 8 is
the simplest from the theoretical point of view since it has
been computed in the idealized configuration admitting a 1D
solution. In order to obtain a model relevant to the experiment,
one should take into account effects introduced by the lateral
wall: absorption of the ions and electrons by the lateral wall
of the discharge tube with their subsequent recombination in
the case of a glow discharge and collection of electric current
and energy flux from the plasma by the lateral surface of an
arc cathode. One can expect that this will affect the pattern of
multiple solutions in two ways. The first change is obvious:
an absorbing wall of a discharge tube reduces the intensity
of a glow discharge in the vicinity of the wall due to losses
of the charged particles caused by diffusion to the wall; in
contrast, energy- and current-collecting lateral surface of an
arc cathode provides an additional heating of the edge of the
front surface and thus locally enhances the discharge. As a
consequence, 3D spots originally positioned in contact with
the cathode edge will be shifted inside the cathode in the case
of the glow discharge and will expand to the lateral surface of
the cathode in the case of the arc cathode. This is indeed the
case, as shown in [38] for the glow discharge and [43] for arc
cathodes.

The second change originating in effects introduced by the
lateral wall concerns 2D solutions and is as follows. The model
with account of these effects does not admit 1D solutions.
However, it does admit a 2D solution which is in some aspects
analogous to the 1D solution in the model with the idealized
geometry; in particular, both exist at all discharge currents and
3D solutions branch from both. Let us designate the mode
described by this 2D solution the fundamental mode. 2D
solutions do not branch from the fundamental-mode solution:
the latter solution is 2D as well, i.e. has the same symmetry,
and no breaking of symmetry normally means no bifurcations.
Hence, bifurcations occurring in the original model at states
a3 and b3 in figure 7(a) and a3 in figure 7(b) disappear in the
modified model and the fundamental mode becomes separated
from all the other 2D modes (i.e. from 2D modes existing
in a limited current range; we will call such modes non-
fundamental 2D modes). The phenomenon of destruction of a
bifurcation and breaking of the bifurcating solutions into two
isolated solutions is well known; a self-sufficient summary of
relevant information from the bifurcation theory can be found
in [8, appendix A3].

In particular, it is known that a destruction of a bifurcation
is accompanied by exchange of branches of the solutions. This
means that the sections Pa3 and (in the case of the glow
discharge) Nb3 of the 1D solution separate from the section
a3b3 (or, in the case of the arc cathode, from the section a3N )
and join one of the branches of 2D solution bifurcating at a3

and (in the case of the glow discharge) b3. In agreement with
what was said above concerning the first change, the glow
discharge on the sections Pa3 and Nb3 will be less intense on
the periphery of the cathode than at the center, and one should
expect that these sections will join the branch a3Qb3, which
has similar properties. In contrast, the arc discharge on the
section Pa3 will be more intense on the periphery than at the

Figure 9. CVCs and schematics of current density distribution over
the surface of a cylindrical arc cathode described by different
steady-state solutions;Ar plasma, p = 1 bar, W cathode, R = 2 mm,
h = 10 mm. Adapted from [6].

center, hence one should expect that this section will join the
branch a3S.

Thus, the second change may be described as follows: the
fundamental-mode solution, i.e. the 2D solution which exists
at all discharge currents in the model with active lateral surface,
has as its analog in the original model not the 1D solution NP

but rather a composed solution Nb3Qa3P (or, in the case of the
arc cathode, Sa3P ), which comprises both 1D and 2D sections.
A more detailed discussion can be found in [8].

As an example, let us consider figure 9, which has been
computed for the same conditions as figure 7(b) but with
account of collection of electric current and energy flux by
the lateral surface of the cathode. The line NP represents
the fundamental-mode solution. 3D solutions with one to
four spots on the edge of the cathode branch off from the
fundamental-mode solution at the states a1, a2, a4 and a5.
The dashed line represents a non-fundamental 2D solution,
from which another four 3D solutions branch off at the
states a3,1 to a3,4. (The bifurcation point a3,3 coincides with
a3,1 to the graphic accuracy; only shown is the 3D solution
that branches off at the bifurcation point a3,2.) The pattern
of multiple solutions seen in figure 9 is similar to that of
figure 7(b) except for the above-described changes: spots on the
periphery of the front surface extend to the lateral surface; the
fundamental-mode discharge is more intense at the edge than at
the center; the non-fundamental 2D solution is detached from
the fundamental-mode solution. Note that bifurcation points
a1, a2 and a3,2 in figure 7(b) correspond to those in figure 9;
bifurcation occurring at the state a3 in figure 7(b) has no analog
in figure 9 (was destroyed), which is why the designation a3 is
not used in figure 9; bifurcation points a4 and a3,3 in figure 7(b)
do not correspond to those in figure 9 because of the above-
described exchange of branches.

The exchange of branches is not manifested in figure 9,
the reason being that the CVCs of the 1D solution and the
composed solution, NP and Sa3P in figure 7(b), are quite
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close. However, the exchange of branches does manifest
itself in numerical simulations. Suppose that one wishes to
compute the fundamental-mode solution by starting from the
1D solution and then gradually eliminating the insulation from
the lateral surface of the cathode at a fixed voltage until a
solution for a fully active lateral surface has been found. (This
is one of the options offered by the online tool [39]; the example
being described was taken from the tutorial available at the
site.) This approach works if the initial state belongs to the
section Pa3 of the 1D mode. If one starts from a state on
the section a3N , then the iterations either converge to a state
belonging to the low-voltage branch of the non-fundamental
2D solution, or diverge. Further details can be found in [8].

In the case of the glow discharge, the CVCs of the 1D
solution and the composed solution, NP and Nb3Qa3P in
figure 7(a), are not close, therefore the exchange of branches
in the case of the glow discharge should be readily visible.
This is indeed the case, as shown by figure 1. The above
reasoning explains how the diffusion losses of the ions and
the electrons to the wall, which is a weak effect, can originate
such a large difference between the 1D solution in the model
with a reflecting wall and the fundamental-mode 2D solution
in the model with an absorbing wall: the diffusion losses can
significantly affect only states where the balance is delicate,
which are bifurcation points, and result in a destruction of
bifurcations; the subnormal and normal sections are already
present in the model with the reflecting wall, but they represent
a part of the first 2D solution rather than of the 1D solution;
they become a part of the fundamental-mode solution as a result
of the exchange of branches accompanying the destruction of
bifurcations.

4.3. Stability of multiple solutions

Of course, only some of the above-described steady-state
solutions are observed in the experiment, which means that
most of them are unstable. Therefore, investigation of their
stability is of primary importance.

The eigenvalue problem governing the stability of steady-
state solutions in the framework of the linear stability theory is
Hermitian (self-adjoint) in the case of arc cathodes [19], which
means that its spectrum is real. This is not in the case for the
glow discharge. Therefore, stability analysis is significantly
more difficult in the latter case than in the former.

The pattern of stability of steady-state current transfer
to arc cathodes has been investigated analytically [19] and
numerically [52]. It was shown, in particular, that the stability
of the fundamental mode conforms to the reasoning on the
stability of the 1D spotless mode given in section 2.2. Results
for the case of a current-controlled arc on a rod cathode may be
summarized as follows: modes with a spot at the center or with
multiple spots are always unstable; the only modes that can be
stable are the fundamental mode and the high-voltage branch
of the first 3D spot mode; the transition between these two
modes is non-stationary without oscillations and accompanied
by hysteresis.

The stability of glow microdischarges was investigated
numerically [36]. The fundamental mode is stable in the

abnormal regime, in a certain current range in the normal
regime, and at low currents in the Townsend regime. The
loss of stability in the Townsend regime is likely to occur in an
oscillatory way and the loss of stability in the abnormal regime
is likely to occur in a monotonic way. Of all modes with
patterns, stability has been investigated of only the first and
second 2D modes. It is found that the first 2D non-fundamental
steady-state mode is stable in a certain current range on the
high-voltage branch.

A comparative analysis of the stability of current transfer
to cathodes of vacuum and ambient-gas arc discharges,
including the nonlinear stage of evolution of unstable states,
was performed by means of a time-dependent code [55].

4.4. Experimental validation

By now, a theory of diffuse and spot modes on cathodes of
high-pressure arc discharges based on the concept of multiple
solutions has gone through a detailed experimental validation
by means of different methods, such as spectroscopic
measurements, electrostatic probe measurements, electrical
and pyrometric measurements, and calorimetry. The effort was
focused on low-current arcs typical of high-intensity discharge
lamps. One can specifically mention works of Mentel and co-
workers, in particular, [42]. Further references can be found
in [6]; one can also mention works [45, 56, 57] as more recent
examples. In particular, in [56] the possibility of real-time
quenching of the instability causing the formation of spots
on cathodes of high-pressure arc discharges was demonstrated
by means of numerical simulations and experimentally. This
possibility stems from the fact that the instability is of thermal
nature and therefore slow.

Multiple solutions computed in the theory of glow
discharges agree with the experiment as well, although the
comparison has been merely qualitative up to now. In
particular, the composed solution Nb1a1P in figure 7(a),
which describes the 2D abnormal discharge at high currents,
the 2D Townsend discharge at low currents, and the normal
discharge with a 3D normal spot attached to the edge of the
cathode at intermediate currents, conforms to experimental
information cited in textbooks on gas discharges.

Spot patterns computed in [7, 38, 53, 54], some of which
are shown in figures 7(a) and 8, are similar to self-organized
steady-state spot patterns observed during the last decade
in experiments with glow microdischarges [26–28, 58–65],
primarily by Schoenbach and co-workers. Note that the
luminous objects observed in these experiments may be
called filaments. However, they are produced in the cathode
boundary layer, as shown, e.g., by the lateral photographs
in [27]. Therefore, the term ‘cathode spots’ seems to be no
less justified. Most observations [26–28, 58–65] have been
performed in the so-called cathode boundary layer discharge
(CBLD) electrode configuration, which comprises a planar
cathode and a ring-shaped anode. However, it is important
to stress that patterns observed in discharges with parallel-
plane electrodes [60] are similar to those observed in the CBLD
configuration.

A quasi-stationary, continuous and reversible transition
between the 2D mode with a central spot and the 3D mode
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with four spots has been observed in the experiment [65,
images (10)–(12) in figure 2]. These observations represent
a direct proof of the existence of bifurcations of steady-state
solutions, which is the cornerstone of the theory. The CVC
of this transition [65, figure 3a] clearly represents a diagram
of subcritical bifurcation, and so does also the CVC shown
in [27, figure 3(a)]. Simulations of this transition can be found
in [54].

The only type of bifurcations in which a 3D solution
branches off from another 3D solution is period doubling
as discussed at the end of section 2.2. It follows that a
transition between, say, 3D patterns with 4 and 5 spots must be
discontinuous and may be accompanied by hysteresis, as well
as all the other similar transitions. Indeed, in the experiment
such transitions occur in this way; e.g. [27, 65].

Until recently, the patterns were observed in experiments
with dc glow microdischarges in 99.999%-pure xenon but not
in other plasma-producing gases, such as argon [58] or krypton
[27]. According to the theory, however, self-organization in dc
glow discharges is a general phenomenon and not particular of
xenon, and the modeling [38] indicated that multiple solutions
exist in gases other than xenon provided that the pressure is
high enough. Indeed, in recent experiments [64] patterns have
been observed in krypton starting from pressures about twice
as high as those necessary for self-organization in xenon, in
agreement with the modeling predictions. Self-organization
was also observed in xenon with 0.5% air impurity [65]. Note
that the latter has been achieved by means of adjustment of
the discharge current on the microampere scale, which also
enabled the emergence of patterns that have not been observed
previously; see below.

The conclusion of the modeling [36] that the loss of
stability of Townsend and abnormal discharges is likely to
occur, respectively, with and without oscillations, conforms
to the experimental fact that oscillations can develop in the
course of transition from the Townsend discharge to the normal
glow discharge [10–17], while the transition from the abnormal
discharge to the normal discharge or a steady-state mode with
multiple spots normally occurs in a monotonic way. On the
other hand, the modeling [36] showed that in a very narrow
current range the loss of stability of an abnormal discharge
occurs through perturbations oscillating in time, and this was
observed in the experiment as well [27, figure 2(c)].

The conclusion [36] that the mode with a circular normal
spot at the center of a (circular) cathode and the mode with a
ring spot are stable in certain current ranges and therefore can
be observed in the experiment, conforms to the experiment;
see [27, figure 2 (b)] and [65, images 1–10 in figure 2] and,
respectively, [65, figure 4]. Also observed in the experiment
was a pattern comprising a central spot and a ring spot [65,
figure 6(b)]. These results are particularly interesting since
axially symmetric patterns, being prone to destruction by 3D
perturbations, are by far more rare than 3D patterns; see, e.g.,
discussion in [66]. (As far as gas discharges are concerned,
axially symmetric patterns have been observed on anodes of
glow discharges [67, 68], in dielectric barrier discharges [66],
and on liquid anodes of dc glow discharges [69].)

A transition from small spots to ring segments which
subsequently merge into a ring observed in the experiment [65,
figure 5] appears also in the modeling [54].

Thus, the concept of multiple solutions, when applied to
the theory of glow discharges, allows one to understand and
qualitatively describe in the framework of standard theoretical
models, without invoking special mechanisms favoring self-
organization, steady-state patterns of multiple spots and 3D
and 2D normal cathode spots, as well as their transitions to the
abnormal and Townsend discharges.

5. Related topics

5.1. Self-organization or geometrical concentrations of
current?

There are two reasons for concentration of current in certain
parts of the electrode surface, i.e. for the appearance of current
spots: self-organization and non-uniformities of geometrical
and/or physical properties of the surface, such as the presence
of protrusions or areas with a reduced work function. The
geometry shown in figure 2 represents a limiting case where the
current-collecting surface of the cathode is perfectly uniform
and the second reason is absent. As we have seen, there are
multiple solutions in this case describing the spotless mode
of current transfer and different spot modes. The spots are of
a purely self-organization nature in this case. The opposite
limiting case is the one where the cathode surface is strongly
non-uniform and only one solution exists, meaning no self-
organization.

A nice example of coexistence of patterns caused by self-
organization and by geometrical non-uniformities is shown in
figure 10, which is a photograph of a negative corona electrode
of a spiral shape in an electrostatic precipitator [70]. A part
of the cathode is dark with bright spots. These spots, or
tufts, represent a self-organization phenomenon and are briefly
discussed in section 5.5 below.

The other part of the cathode is bright with dark
longitudinal stripes. These stripes seem to be caused not by
self-organization but rather by the specific discharge geometry:
the corona burns only on the side facing the grounded collection
plate while the surface facing the inside of the spiral remains
dark. Current-free stripes on cylindrical and spiral cathodes
have also been obtained in 2D and 3D steady-state numerical
simulations [71]. On the other hand, the bifurcation analysis
[72] performed in the framework of the same model of a corona
discharge [71, 73] that was used in [71] showed that there
are no bifurcation points on the steady-state 1D cylindrically
symmetric solution. This indicates that regimes with self-
organized patterns do not exist in the framework of the model
[71, 73]. Hence, the stripes computed in [71] (and observed in
[70]) indeed represent a consequence of the specific discharge
geometry rather than a self-organization phenomenon.

A transition between self-organized spots and geometrical
current concentrations was studied numerically for high-
pressure arc cathodes of different geometries [37]. The
modeling started from a geometry in which there is a (self-
organized) pattern of current transfer comprising two distinct
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Figure 10. Negative corona electrode of an electrostatic precipitator.
Courtesy of U Kogelschatz.

modes, the diffuse mode and the spot mode. As the geometry
changes in a way that the degree of non-uniformity of the
diffuse mode increases, a transition occurs to a pattern with a
single mode, which embraces states with a diffuse temperature
distribution at high currents and states with a hot spot at low
currents. This transition is realized through a bifurcation of
the diffuse mode and the spot mode, which occurs at a certain
combination of control parameters, is not symmetry-breaking,
and is accompanied by exchange of branches of the modes. In
mathematical terms, this is a perturbed transcritical bifurcation
of second-order contact [8].

5.2. Solitary cathode spots

The diameter of well-developed spots on glow cathodes in the
experiment [27] was around 80 µm, which is comparable to
the thickness of the near-cathode layer (between 50 and 70 µm,
depending on the pressure and current) and much smaller than
the cathode diameter (750 µm). The radius of spots on contacts
of high-power vacuum circuit breakers does not exceed a few
tens of micrometers, while the radius of a contact and the
average distance between neighboring spots are of the order
of 1 cm and 1 mm, respectively. These examples show that
there are situations of practical interest where the spots are
small. One can expect that an adequate theoretical description
of a small spot may be obtained by means of neglecting the
presence of other spots and the cathode boundaries. In other
words, one can consider a solitary cylindrically symmetric

cathode spot in a dc glow discharge between infinitely wide
electrodes or on an infinite planar (half-space) arc cathode.

Modeling of solitary spots on a cathode of a high-pressure
arc discharge was reported in [47]. Also studied in [47] was a
transition from the spot mode on a finite cathode in the limiting
case of large cathode dimensions to the solitary spot mode.
Modeling of solitary spots on a cathode of a vacuum arc and
of their stability was reported in [55, 74].

Approximate analytical models of solitary spots have
been developed and used for several decades for modeling of
cathode spots of vacuum arcs; e.g. [75–78]. Such models are
based on dividing the cathode surface into a current-collecting
circular region (a spot) of a constant temperature and the
surrounding current-free region. The models are governed
by two parameters, the spot temperature and radius, and the
equation of integral heat balance of the spot is insufficient to
determine both. Some models relied on empirical parameters,
while in others the missing relation was obtained by invoking
arbitrary theoretical assumptions, such as some or other
implementation of Steenbeck’s principle of minimum power
or considerations concerning processes on the plasma side.
An asymptotic solution exploiting the Arrhenius character
of processes involved was found in [79] by means of the
method of matched asymptotic expansions. The spot core,
the current-free periphery and the transition region appear in
the asymptotic analysis in a natural way as three different
asymptotic regions. The spot radius is found to be governed
by a condition of solvability of the problem describing the
temperature distribution in the transition region. The spot
model obtained in this way was tested on a model problem with
a step-function dependence of the energy flux from the plasma
to the cathode surface on the surface temperature [80] and
gave useful results when applied to cathode spots in vacuum
arcs [78].

5.3. Is there a place for Steenbeck’s principle of minimum
power?

Some researchers assume that if different modes of discharge
are possible at the same discharge current, the mode with a
lower voltage is the preferred (stable) one. This assumption
stems from the so-called Steenbeck’s principle of minimum
power, which was proposed long ago for an arc discharge [81]
and has been extensively invoked in investigations of many gas
discharge phenomena, including the effect of normal current
density on glow cathodes [1] and cathode spots in vacuum
arc discharges [82]. One should bear in mind, however, that
Steenbeck’s principle is a not a corollary of the principle
of minimum entropy production [83], in contrast to what
is frequently assumed. Similarly, Steenbeck’s principle is
not a corollary of mathematical models of gas discharges;
hence, this principle contradicts the mathematical models. It
is not surprising, therefore, that the above-described results
of investigations of the stability of multiple solutions have not
confirmed the assumption of the mode corresponding to a lower
voltage being preferable. Furthermore, the occurrence of a
hysteresis in the modeling of, and experiments on, transition
between the spot and diffuse modes on arc cathodes is by itself
an unambiguous indication of incorrectness of this assumption.
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Figure 11. CDVCs described by the 1D solution; glow discharge in
Xe plasma, p = 30 Torr, h = 0.5 mm. Data from [38].

Figure 12. CVC of the CBLD; Xe plasma, p = 30 Torr,
R = h = 0.5 mm. Reprinted from [84].

5.4. Simple situations, complex behavior

Glow discharges and arc–cathode interaction sometimes reveal
complex behavior in apparently simple situations, including
those where multiple solutions are not of primary concern. One
example, which has to do with the effect of lateral surface, has
already been illustrated by figure 1 and discussed at the end of
section 4.2.

Two further examples are illustrated by figures 11 and 12.
Figure 11 depicts the CDVC of a glow discharge in xenon
computed in 1D in the framework of a model [38], which is
rather detailed and accounts for atomic and molecular ions,
electrons, excited atoms, excimers, direct ionization, stepwise
ionization, ionization of excimers and non-locality of electron
energy. Also shown for comparison is the CDVC computed
by means of the basic model, which was used for simulations
shown in figures 7(a) and 8 and takes into account a single ion

species produced via a single effective ionization process and
employs the local-field approximation.

Qualitatively there is not much difference between the
CDVCs obtained with the basic and detailed models except
that the 1D mode computed in the framework of the detailed
model, surprisingly, manifests a retrograde behavior in the
current density range 200 A m−2 � j � 300 A m−2; see the
S-shape manifested by the solid line in figure 11. A similar
behavior has been found in the framework of a similar detailed
model [84] developed for argon; however, while the retrograde
behavior in xenon disappears if stepwise ionization is neglected
as seen in figure 11, it does not in argon [38].

The CVC of the discharge in the CBL configuration
(planar cathode and a ring-shaped anode) computed in 2D in
the framework of the basic model is shown in figure 12 [84].
Surprisingly, it exhibits a loop. (In fact, there is no major
difference between this loop and the S-shape seen in figure 11:
what matters is that in both cases the discharge reveals two
turning points, i.e. a retrograde behavior.) The discharge is
associated with a pattern comprising a ring spot at the cathode
in the range of discharge currents below the loop and a spot at
the center in the range of currents above the loop. Neither spot
is normal, i.e. the effect of normal current density is absent.
The loop is associated with a transition from the pattern with
a ring spot to the pattern with a central spot, which occurs
as follows: the inner radius of the ring spot decreases and
then turns zero (i.e. the ring spot becomes a circle) and the
outer radius is somewhat reduced. Note that although methods
of numerical simulations of microdischarges are generally
well developed, e.g. [85–89], no retrograde behavior of the
discharge has apparently been reported. It is unclear whether
such behavior could be noticed if a time-dependent solver is
employed.

5.5. Observations of spots and patterns on electrodes of gas
discharges

Self-organization phenomena in gas discharges are extremely
diverse. We merely mention self-organization in the bulk
plasma, which ranges from filaments and striations in the
discharge column, known for many decades (e.g. [1, 90,
91] and references therein), to exciting new examples such
as plasma bullets in atmospheric-pressure plasma jets (e.g.
[92, 93]), filamentation in atmospheric-pressure microwave
plasmas (e.g. [94, 95]), and liquids and crystals of charged
particles in non-ideal plasmas (e.g. [96]).

Note that there is a clear distinction between striations,
on the one hand, and filaments and electrode spots, on
the other: striations represent a self-organized variation in
the direction along the discharge current, while filaments
and electrode spots represent a self-organized variation in
directions perpendicular to current. Striations are ionization
waves governed by ionization kinetics and transport processes,
while mechanisms of filaments and electrode spots are quite
diverse. A distinction between filaments and electrode spots
is clear if the discharge is long enough and possesses a well-
pronounced plasma column, which is only weakly dependent
on details of current distribution over the electrode surfaces.
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Otherwise, this distinction may be rather vague, as mentioned
in section 4.4 in connection with the works [26–28, 58–65].

Let us give here a brief summary of observations of spots
and patterns on electrodes of gas discharges and relevant first-
principles theory and/or modeling wherever exist. Note that
many further references can be found in [97].

Observations of modes with multiple spots in dc
microdischarges [26–28, 58–65] and their modeling have
already been discussed. Note that similar patterns have been
observed in CBLD with several circular holes operated in
parallel, while self-organization in micro-slit CBLD has a
ladder-like structure [28].

Modes with multiple cathode spots have also been
observed on cathodes of transient [98] and non-self-sustained
dc glow [99–102] discharges. Planar steady-state filaments
in the cathode layer of a non-self-sustained glow discharge
were computed in [32]. Note that it would be of interest to
try to compute patterns of 3D spots on cathodes of non-self-
sustained dc discharges by means of the approach based on
multiple solutions, reviewed in this paper.

Observations of different modes of current transfer to
cathodes of high-pressure arc discharges were reported in [103]
for low-current arcs and in [104] for arcs with the current of a
few hundred amperes. Many subsequent observations are cited
in [6, 37]. A variety of different modes have been observed,
the most frequent being the diffuse mode and a constricted,
or spot, mode. As indicated in section 4.4, a theory of the
diffuse and spot modes has been validated experimentally for
low-current arcs. One can also mention the so-called blue-
core, or hot-core, mode which occurs on cathodes of low-
current free-burning arcs [105–107]. The blue-core mode was
observed mostly on cathodes made of thoriated tungsten; with
pure tungsten cathodes it was more difficult to obtain [105].
The authors [106] assumed that a convective motion of the
gas was necessary for the formation of the blue-core mode.
In [108], it was shown that this mode may be explained using
the assumption of a temperature-dependent work function,
which steeply decreases from 4.55 eV to 3 eV at temperatures
above 3000 K due to a thorium ion current.

Diffuse and spot modes also occur on cathodes of
vacuum arcs. Spots on cathodes of vacuum arcs possess
a complex substructure characterized by several length and
time scales; e.g. [109] and references therein. On the largest
(macroscopic) scale, such spots are described by models in
which processes inside the cathode are treated by means
of analytical approximations mentioned in section 5.2 (e.g.
[75–78]) or by means of 2D numerical modeling [55, 74].
However, the theory still cannot answer many important
questions, such as a scientifically interesting and important for
practice question of the effect of the applied magnetic field on
the stability of individual spots and, consequently, on current
per spot [110, 111]. Also observed on cathodes of vacuum arcs
have been patterns of several spots [111–114].

The diffuse, or spotless, mode of current transfer to
cathodes of vacuum arcs is known not so well as the spot
mode; however, its existence has been firmly established by
now [115–121]. Similarly to the diffuse mode on cathodes of
ambient-gas arcs, the spotless mode on cathodes of vacuum

arcs occurs in cases where the average temperature of the
cathode surface is sufficiently high. Values of the cathode
surface temperature necessary to this end are typically around
2000 K and can be achieved by placing the (evaporating)
cathode in a thermally insulated crucible made of a material
for which a vacuum arc would burn at a higher voltage than for
the cathode material. This discharge is capable of generating
a steady highly ionized plasma containing no microdroplet
fraction, which may be useful for applications; e.g. [121].
(Note that this discharge should not be confused with the
so-called thermionic vacuum arc discharge [122], which can
be ignited under high-vacuum conditions between a heated
cathode operating as an electron gun and an evaporating anode
placed in a tungsten crucible and heated to a high temperature
by the electron beam.) The effort invested by different
groups in the experiment and its theoretical analysis has been
significant [115–121, 123–126]; however, understanding of
the spotless mode on cathodes of vacuum arcs remains elusive.
Given that the spotless arc attachment, being in essence a 1D
and stationary phenomenon, represents a much simpler object
than cathode spots, this state of the art is rather surprising and
detrimental not only to potential technological applications of
spotless vacuum arc discharges, but to the vacuum arc physics
in general. One should hope for further attention to this subject.

Spot patterns are also observed on anodes of dc glow
discharges [67, 68, 127–132] and low-current low-pressure arc
discharges [133, 134]. Diffuse, constricted and multiple-spot
modes are observed on anodes of high-pressure arc discharges
[135–140]. Impressive results have been achieved in time-
dependent 3D numerical simulations of the multiple-spot mode
[34, 35].

Beautiful patterns have been observed on liquid electrodes
of glow discharges, both cathodes [141, 142] and anodes
[69, 143].

Interesting self-organized dynamic patterns have been
observed in an experiment with a dc-driven short glow
discharge [144]. A subsequent investigation [145] has revealed
that the patterns are accompanied by current pulsations: the
discharge current represents a sequence of spikes of duration
of the order of a few microseconds. Only one spot per spike
exists; however, on a larger time scale it seems that several
spots exist simultaneously. The discharge in these experiments
is obstructed [145], i.e. operates on the left-hand branch of the
Paschen curve, hence the steady-state CDVC monotonically
grows (e.g. [1, section 8.3.5] with corrections indicated in
[146]). Multiple steady-state solutions do not exist under
these conditions, and this is consistent with the fact that the
patterns observed in [144] are non-stationary. The question
as to why spots appearing in sequence form self-organized
patterns remains open.

Negative corona discharges in electron-attaching gases
can occur in the form of multiple discrete points, or ‘tufts’; e.g.
figure 10 and its discussion in section 5.1 and references [147, p
329], [148, 149]. The average current of a tuft corona is steady,
but is composed of tiny pulses. On a thin wire electrode, the
tufts form a straight line along the wire and are more or less
equally spaced. On a thicker wire, the tufts form a pattern
resembling a brush. On a point electrode, the tufts form one or
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more rings around the tip. Given the common physical nature
of cathode regions of glow discharges and negative coronas
[150], an interesting question is whether there are similarities
in the mechanisms of formation of the tuft patterns and patterns
of multiple spots on cathodes of dc microdischarges.

A variety of different patterns was observed in dielectric
barrier discharges (DBDs); e.g. [97, 151, 152] and references
therein. Impressive results have been achieved in their
numerical simulation performed both in planar [153–161] and
3D [162, 163] geometry.

Stationary and rotating spot patterns have been observed
in a pulsed rf discharge [164]. Well-defined rotating regions
of high plasma emissivity and ionization (so-called spokes)
forming symmetric patterns have been observed in high-power
impulse magnetron sputtering; e.g. [165–168] and references
therein.

A wealth of patterns was observed in dc planar glow
discharges with a thin interelectrode gap with one of the
electrodes being made of a semiconductor material; e.g.
[97, 169–171]. Temporal and spatiotemporal patterns in such
discharges were simulated in [17, 172, 173]. A 2D steady-state
pattern with filaments in such a discharge at very low currents
under cryogenic conditions has been successfully computed
in [33] and its appearance was attributed to the well-known
thermal instability mechanism [174]: an increase in the current
density causes an increase in Joule heating, a decrease in the
gas density, and therefore an increase in the reduced electric
field and the ionization coefficient; see also [175].

A regular filamentary structure develops in a negative
polarity nanosecond surface DBD provided that pressure
and/or applied voltage are sufficiently high [176]. The authors
[176] attributed the filamentation to a thermal mechanism,
similar to the one described in the preceding paragraph. As
shown in [33, 174, 175], this mechanism can be dominating at
very low current densities (in the Townsend regime); however,
in the experiments [176] the current densities are estimated
to be of the order of the normal current density, i.e. much
higher than that in the Townsend regime. Hence, the thermal
mechanism can hardly be dominating under the conditions
[176]: the cathode sheath mechanism shown in figure 4 is likely
to play a role or be dominating.

6. Concluding discussion

6.1. Summary of results in the context of general theory and
modeling of gas discharges

Self-consistent theoretical models of dc glow discharges and
cathodic part of ambient-gas arc discharges, including the most
basic ones, admit multiple solutions existing for the same
discharge current. One of these solutions is in the simplest
case one-dimensional and describes states with a uniform
distribution of current over the cathode surface; this solution is
similar to the one given in textbooks. Other solutions are in all
the cases multidimensional and describe modes with different
self-organized configurations of cathode spots. The existence
of multidimensional solutions has been hypothesized long ago;
however, they started to be systematically computed only in the
last 15 years.

A theory of diffuse and spot modes of current transfer to
high-pressure arc cathodes based on the concept of multiple
solutions has gone through a detailed experimental validation
in low-current arcs and has proved relevant for industrial
applications.

Multiple solutions computed in the theory of glow
discharges agree with the experiment as well (see section 4.4),
although the comparison has been merely qualitative up to now.
These solutions allow one to understand and describe in the
framework of standard theoretical models, without invoking
special mechanisms favoring self-organization, steady-state
patterns of multiple spots and 3D and axially symmetric normal
cathode spots, as well as their transitions to the abnormal and
Townsend discharges.

The mechanism ensuring existence of multiple solutions
for both glow and arc cathodes originates in the near-cathode
space-charge sheath and is illustrated by figure 4. It follows
that basic processes in the near-cathode space-charge sheath
are sufficient to produce self-organization. This mechanism,
which may be called the cathode sheath instability, is very
general and present in all discharges where the near-cathode
sheath plays a significant role. It may play a role in the
appearance of spots or patterns also on cathodes of ac and
pulse discharges.

Understanding of multiple solutions may also be
important in apparently simple situations where the issue of
multiple solutions seems to be irrelevant.

The existence of multiple solutions describing different
modes of current transfer to electrodes is, of course, not a
feature specific for dc discharges: in the case of ac and pulse
discharges one can think of multiple non-stationary solutions,
one of which varies only in the axial direction (is 1D in
space) and describes a spotless mode and the others vary also
in transversal directions and describe different self-organized
modes; see discussion in [161] for the case of DBDs. A
feature which is specific for dc discharges is the existence
of bifurcations of (steady-state) solutions, and this feature,
having been predicted theoretically, was also confirmed
experimentally as discussed in section 4.4. This feature
represents the basis of the systematic approach to finding
multiple solutions in the cases of both dc glow discharges
and arc–cathode interaction, described in section 3.2. Such an
approach can be used for understanding and modeling spots or
patterns also in other dc discharges provided that the current
transfer is stationary. Note that it is not sufficient that the
discharge is dc-driven and the average discharge current is
steady: the discharge current should not be composed of tiny
pulses. Let us consider as examples three types of patterns
mentioned in section 5.5: (a) patterns observed in the dc planar
glow discharge with a thin interelectrode gap with one of
the electrodes being made of a semiconductor material, (b)
patterns observed in the experiment with a dc-driven short
glow discharge [144] and (c) tufts on the negative corona
electrodes in electron-attaching gases. One should expect that
the approach described in section 3.2 may be applied in case
(a) but not in cases (b) and (c).

In contrast to normal spots on glow cathodes and cathode
spots in ambient-gas arc discharges, which are single spots,
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regular patterns of multiple spots, such as those on cathodes
of dc glow microdischarges and non-self-sustained dc and
transient glow discharges, anodes of glow discharges and
ambient-gas arcs, thin glow discharges sandwiched with
a semiconductor layer, corona electrodes and DBDs, are
clearly self-organization phenomena. Such patterns have
been frequently simulated by means of a phenomenological
approach in which the distribution of parameters along the
electrode surface is assumed to be governed by a reaction–
diffusion equation (a diffusion equation with a nonlinear source
term) or by a system of coupled reaction–diffusion equations;
e.g. [68, 97, 174, 177–181]. For special situations, attempts
have been made to derive reaction–diffusion-type equations
by means of a two-scale asymptotic technique from basic
equations that govern a particular discharge [14, 20, 182, 183].
However, in most situations reaction–diffusion equations for
distribution of parameters along the electrode surface are
just postulated on the basis of qualitative considerations and
features characteristic of nonlinear dissipative systems. On
the other hand, there is a growing trend to model patterns
in gas discharges from first principles; see, e.g., the above-
mentioned first-principles numerical simulation of patterns in
DBDs [153–163]. The first-principles simulation of steady-
state patterns on glow cathodes, reviewed in this paper, is in
line with this trend.

6.2. Effect of normal current density on glow cathodes

Normal spots on glow cathodes and arc cathode spots puzzled
researchers for many decades and have generated a number
of hypotheses, models and theoretical frameworks that few
phenomena in gas discharge physics have. Classic textbooks
attributed the effect of normal current density on glow cathodes
to ‘dispersive forces’ acting radially outwards and controlling
the emitting cathode area [184, p 224] (this author appealed
to the minimum energy principle); instability of the edge
of normal spot [1, section 8.4.9]; instability of a discharge
operating on the falling section of the CVC with a fixed
external voltage source [2, p 549]. A significant development
was represented by 2D numerical simulations of normal
spots [14, 16, 185–189]. However, the question of how to
compute solutions similar to the one which is depicted by the
line Nb1a1P in figure 7(a) and describes the 2D abnormal
discharge at high currents, the 2D Townsend discharge at low
currents, and the 3D normal discharge with a spot attached
to the edge of the cathode at intermediate currents remained
unanswered; and the question as to how diffusion of the
charged particles to the wall, which is a weak effect, can cause
a dramatic difference between the 1D and 2D solutions seen in
figure 1 has not even been asked. (Although 2D solutions in a
wide current range similar to the one depicted in figure 1 except
for the Z-shape connecting the Townsend and subnormal
discharges have been computed; see [188, figure 1].)

The approach based on multiple solutions has shown
that normal spots on glow cathodes and cathode spots in arc
discharges are a part of the general self-organization pattern,
thus providing a better understanding and a possibility of
systematic computation. In particular, in figure 7(a) the effect

of normal current density manifests itself as a well-pronounced
horizontal section revealed by the CVCs a1b1 and a3Qb3 and
occurs where a large spot coexists with a large current-free
region. The line a1b1 is qualitatively similar to the line a1b1

in figure 6, in agreement with the general theory discussed in
section 2.3. The normal voltage is a bit higher than the voltage
corresponding to the point of minimum of the CDVC described
by the 1D solution, in agreement with [1, section 8.4.9]. Other
solutions shown in figure 7(a) refer to situations where the
spot and/or the current-free region are not large and the effect
of normal current density is absent.

According to numerical results [7, figure 2], the current
density inside the 2D normal spots is virtually uniform and
independent of the discharge current. The same is true for the
3D normal spots. Furthermore, the current densities inside the
2D and 3D normal spots are virtually the same. (The latter can
also be deduced from figure 7(a): the plateaus revealed by the
CVCs a1b1 and a3Qb3 occur at the same value of U .) All this
is consistent with the usual concept of normal current density.
However, the normal current density does not coincide with
the current density at the minimum of the CDVC, in contrast
to what is frequently believed: the former exceeds the latter
and the difference under conditions of figure 7(a) is about a
factor of 2 [7].

The effect of normal current density is a manifestation of
coexistence of phases illustrated by figure 5. The coexistence
is possible for only one value of the control parameter and
this value is determined by the condition of solvability of a
problem describing the coexistence; Maxwell’s construction
(e.g. [21]). In our case, for each set of conditions there is only
one value of voltage for which equations of glow discharge (e.g.
equations of conservation and transport of charged particles
and the Poisson equation) admit a steady-state planar solution
describing coexistence of an infinite spot with an infinite
current-free region. In other words, steady-state solutions
describing coexistence of phases for arbitrary values of voltage
do not realize not because they are unstable, but simply because
they do not exist. While this reasoning relies on general
considerations, it would be of interest to obtain also a direct
confirmation by means of a computational investigation of the
above-mentioned equations of glow discharge. Note that for
arc cathodes this reasoning has been confirmed and an explicit
form of Maxwell’s construction, governing the normal voltage,
derived [9, 20, 22].

6.3. Possible directions of future work

While the theory of diffuse and spot modes on high-pressure
arc cathodes based on the concept of multiple solutions has
gone through a rather detailed experimental validation, the
experimental validation of multiple solutions computed in the
theory of glow discharges has been merely qualitative up to
now and much further work is required.

While account of non-local electron kinetics is essential
for striations in glow discharges (e.g. [91]), main features of
filamentation in glow-like discharges have been successfully
reproduced in the framework of the most basic self-consistent
model which assumes local electron kinetics and takes into
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account only one ion species and one ionization channel;
examples being modeling of pattern formation in DBDs
[153–157, 159, 162] and of filamentary plasma arrays in
microwave breakdown [190, 191]. Therefore, it is not
surprising that main features of spots and patterns observed
on cathodes of dc glow discharges have been reproduced in
the framework of the above-mentioned basic model. On the
other hand, finding multiple solutions in the framework of
detailed models of glow discharges, which would also take
into account the dependence of the coefficient of electron–ion
emission on the electric field strength (e.g. [192, 193]), is of
significant interest and further work on this way will hopefully
follow.

Steady-state patterns of current transfer predicted by
general trends of self-organization theory and computed
numerically for dc glow discharges and plasma–cathode
interaction in high-pressure arc discharges are similar.
However, the experiment reveals significant differences
between modes observed in glow microdischarges, on the one
hand, and in regular-scale glow discharges and on cathodes of
high-pressure arc discharges, on the other. First, patterns with
multiple spots have been observed in glow microdischarges
but not in regular-scale glows or on cathodes of high-pressure
arcs. Second, while axially symmetric current distributions
on planar circular cathodes have been observed in glow
microdischarges, normal spots in regular-scale glows and
cathode spots in high-pressure arc discharges are attached to
the edge of the cathode, i.e. are 3D. One should presume
that these differences are caused by substantially different
properties of the stability of steady-state solutions. While the
stability of steady-state solutions describing different modes
has been reasonably well understood for cathodes of high-
pressure arc discharges, there is considerable amount of work
to do as far as glow discharges are concerned.

The vast majority of multiple steady-state solutions
found in the theory of glow discharges and plasma–cathode
interaction in arc discharges have been computed by means of
steady-state solvers. The relevance of the use of steady-state
solvers was discussed in section 3.2. On the other hand, it
would be helpful if multiple solutions could be computed
in some cases also by means of one of the time-dependent
solvers which are used by virtually all groups engaged in
modeling of gas discharges. Time-dependent solvers are not as
demanding in regard to initial condition as steady-state solvers
are in regard to initial approximation; besides, time-dependent
solvers give information on stability. Therefore, an intelligent
combination of steady-state and time-dependent solvers would
make a powerful tool.
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[87] Makasheva K, Muñoz-Serrano E, Hagelaar G, Boeuf J P and
Pitchford L C 2007 Plasma Phys. Control. Fusion 49 B233

[88] Deconinck T and Raja L L 2009 Plasma Process. Polym.
6 335

[89] Zhang X, Wang X, Liu F and Lu Y 2009 IEEE Trans. Plasma
Sci. 37 2055

[90] Velikhov E P, Kovalev E P and Rakhimov A T 1987 Physical
Phenomena in a Gas Discharge Plasma (Moscow: Nauka)
(in Russian)

[91] Kolobov V I 2006 J. Phys. D: Appl. Phys. 39 R487
[92] Teschke M, Kedzierski J, Finantu-Dinu E G, Korzec D and

Engemann J 2005 IEEE Trans. Plasma Sci. 33 310
[93] Lu X, Naidis G, Laroussi M and Ostrikov K 2014 Phys. Rep.

540 123
[94] Hidaka Y, Choi E M, .Mastovsky I, Shapiro M A, Sirigiri J R

and Temkin R J 2008 Phys. Rev. Lett. 100 035003
[95] Cardoso R P, Belmonte T, Noël C, Kosior F and Henrion G
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Block D, Melzer A and Piel A 2012 ESCAMPIG XXI
(Viana do Castelo, Portugal, 10–14 July 2012)
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ed J Országh et al (Bratislava: Society for Plasma
Research and Applications, Library and Publishing Centre
CU) pp 19–30, ISBN 978-80-89186-72-3

[158] Shkurenkov I A, Mankelevich Y A and Rakhimova T V 2011
Eur. Phys. J. D 61 95

[159] Bernecker B, Callegari T and Boeuf J P 2011 J. Phys. D:
Appl. Phys. 44 262002

[160] Shkurenkov I A, Mankelevich Yu A and Rakhimova T V
2013 Plasma Sources Sci. Technol. 22 015021

[161] Callegari T, Bernecker B and Boeuf J P 2014 Plasma Sources
Sci. Technol. 23 054003

[162] Stollenwerk L, Amiranashvili Sh, Boeuf J-P and
Purwins H-G 2006 Phys. Rev. Lett. 96 255001

[163] Bhoj A N and Kolobov V I 2011 IEEE Trans. Plasma Sci.
39 2152

22

http://dx.doi.org/10.1109/TPS.2009.2012512
http://dx.doi.org/10.1007/BF01329536
http://dx.doi.org/10.1016/0022-4073(63)90015-3
http://dx.doi.org/10.1088/0022-3727/34/21/310
http://dx.doi.org/10.1088/0022-3727/37/2/005
http://dx.doi.org/10.1103/PhysRevE.75.016406
http://dx.doi.org/10.1088/0963-0252/23/5/054005
http://dx.doi.org/10.1088/0022-3727/34/17/202
http://dx.doi.org/10.1109/TPS.2007.901920
http://dx.doi.org/10.1109/TPS.2013.2249536
http://dx.doi.org/10.1088/0022-3727/8/6/014
http://dx.doi.org/10.1109/TPS.2003.818414
http://dx.doi.org/10.1023/A:1026132325564
http://dx.doi.org/10.1088/1009-0630/9/3/06
http://dx.doi.org/10.1109/27.476470
http://dx.doi.org/10.1103/PhysRev.58.446
http://dx.doi.org/10.1080/00207218208901448
http://dx.doi.org/10.1109/TPS.2011.2157365
http://dx.doi.org/10.1088/0963-0252/22/4/045003
http://dx.doi.org/10.1007/BF01365650
http://dx.doi.org/10.1134/1.1258649
http://dx.doi.org/10.1088/0963-0252/16/3/012
http://dx.doi.org/10.1088/0022-3727/43/2/023001
http://dx.doi.org/10.1088/0963-0252/20/1/013001
http://dx.doi.org/10.1063/1.3117223
http://dx.doi.org/10.1063/1.1604271
http://dx.doi.org/10.1088/0022-3727/38/7/010
http://dx.doi.org/10.1103/PhysRevE.70.017401
http://dx.doi.org/10.1109/27.125038
http://dx.doi.org/10.1088/0963-0252/23/5/054015
http://dx.doi.org/10.1088/0963-0252/14/2/S03
http://dx.doi.org/10.1109/TPS.2002.804201
http://dx.doi.org/10.1088/1742-6596/257/1/012015
http://dx.doi.org/10.1109/27.763004
http://dx.doi.org/10.1063/1.370556
http://dx.doi.org/10.1088/0256-307X/24/7/057
http://dx.doi.org/10.1051/epjap/2009082
http://dx.doi.org/10.1140/epjd/e2010-00234-1
http://dx.doi.org/10.1088/0022-3727/44/26/262002
http://dx.doi.org/10.1088/0963-0252/22/1/015021
http://dx.doi.org/10.1088/0963-0252/23/5/054003
http://dx.doi.org/10.1103/PhysRevLett.96.255001
http://dx.doi.org/10.1109/TPS.2011.2160874


Plasma Sources Sci. Technol. 23 (2014) 054019 M S Benilov

[164] Voronov M, Hoffmann V, Steingrobe T, Buscher W,
Engelhard C, Storey A, Ray S J and Hieftje G M 2014
Plasma Sources Sci. Technol. 23 054009

[165] Kozyrev A V, Sochugov N S S, Oskomov K V, Zakharov A N
and Odivanova A N 2011 Plasma Phys. Rep. 37 621

[166] Anders A, Ni P and Rauch A 2012 J. Appl. Phys. 111 053304
[167] Anders A 2012 Appl. Phys. Lett. 100 224104
[168] de los Arcos T, Schröder R, Gonzalvo Y A,
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