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Abstract

The work is concerned with modelling of low-current quasi-stationary discharges,
including the Townsend and corona discharges. The aim is to develop an integrated
approach suitable for the computation of the whole range of existence of a quasi-
stationary discharge from its inception to a non-stationary transition to another
discharge form, such as a transition from the Townsend discharge to a normal glow
discharge or the corona-to-streamer transition. This task includes three steps: (i)
modelling of the ignition of a self-sustaining discharge, (ii) modelling of the quasi-
stationary evolution of the discharge with increasing current, and (iii) the determi-
nation of the current range where the quasi-stationary discharge becomes unstable
and the non-stationary transition to another discharge form begins. Each of these
three steps is considered in some detail with a number of examples, referring mostly
to discharges in high-pressure air.
Keywords: gas discharge modelling, discharge ignition, self-sustainment condi-

tion, breakdown, corona discharge, Townsend discharge.
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1 Introduction

The physics of many gas discharge systems has been understood reasonably well by now.
High-quality data for evaluation of transport and kinetic coeffi cients and tools performing
such evaluation are publicly available, e.g., LXCat [1] and LoKI [2]. Sophisticated numer-
ical models have been developed for simulation of gas discharge systems. Such models
are virtually universally based on time-dependent solvers, which give detailed information
on spatiotemporal distributions of plasma parameters and are indispensable for studies
of discharges with fast temporal variations, such as high-frequency discharges, pulsed
discharges, streamer and spark discharges etc; e.g., [3, 4].
Time-dependent solvers can also be used for the computation of steady-state (or, more

precisely, quasi-stationary) gas discharges: an initial state of a discharge is specified and
its relaxation over time is followed until a steady state has been attained. An alternative
is to use stationary solvers, which solve steady-state equations describing a steady-state
discharge by means of an iterative process unrelated to time relaxation. Stationary solvers
offer important advantages in simulations of steady-state discharges. In particular, they
are not subject to the Courant—Friedrichs—Lewy criterion or analogous limitations on
time stepping. This allows one to speed up simulations, with improvement by orders of
magnitude in many cases, and is particularly important for modelling discharges with
strongly varying length scales, e.g., corona discharges, where a variation of the mesh
element size by orders of magnitude is indispensable. Moreover, stationary solvers allow
decoupling of physical and numerical stability. Another useful feature of stationary solvers
is their ability to compute patterns of complex behavior that can manifest itself in the
modelling of gas discharges even in apparently simple quasi-stationary situations. Time-
dependent solvers may not provide important information in such cases. Several such
examples referring to the modelling of glow discharges and thermionic arc discharges can
be found in [5].
Although most of the popular ready-to-use toolkits for gas discharge simulation employ

time-dependent solvers, e.g., nonPDPSIM [6] and Plasma module of commercial software
COMSOL Multiphysics R©, stationary solvers for gas discharge modelling are provided by
Plasimo [7]; COMSOL Multiphysics R© provides stationary solvers for general partial dif-
ferential equations; although the Plasma module of COMSOL Multiphysics R© is intended
to work with time-dependent solvers, it can still be used with stationary solvers [5].
This work is concerned with modelling of low-current discharges, including the Townsend

and corona discharges, the aim being to develop an integrated approach suitable for the
computation of the whole range of existence of a quasi-stationary discharge from its incep-
tion to a non-stationary transition to another discharge form, such as the transition from
the Townsend discharge to a normal glow discharge or the corona-to-streamer transition.
It is convenient to divide the task into three steps: (i) modelling of the ignition of a
self-sustaining discharge, (ii) modelling of the quasi-stationary evolution of the discharge
with increasing current, and (iii) the determination of the current range where a quasi-
stationary discharge ceases to exist and the above-mentioned non-stationary transition
begins. Each of these three steps is considered in some detail with a number of examples,
referring mostly to discharges in atmospheric-pressure air.
From the mathematical perspective, the problem of ignition of self-sustaining dis-
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charges is an eigenvalue problem [8]. In this work, several methods for its numerical
solution are discussed and compared. The method of choice, the so-called resonance
method, is physics-based and requires solving a boundary-value problem for steady-state
linear partial differential equations, which may be routinely done by means of ready-to-
use solvers, including commercial ones. Note that, in addition to being of theoretical
interest, understanding the ignition of self-sustaining discharges is important for appli-
cations: it is a useful reference point in the investigation of breakdown in high-voltage
electrical equipment in low-frequency, e.g., 50 Hz, electric fields, where the time of vari-
ation of the applied voltage is much longer than the ion drift time. (In this work, the
term ’breakdown’means a transition from low- to high-current discharge, usually spark or
arc discharge, accompanied by a sharp decrease of the discharge voltage, examples being
streamer or leader breakdown; the meaning that is usual in electrical engineering.) More-
over, in certain conditions the breakdown voltage coincides with the voltage of ignition of
a self-sustaining discharge; e.g., [9].
The solution describing the ignition of a self-sustaining quasi-stationary discharge,

obtained at the first step, may be conveniently extended to higher currents by means of
stationary solvers. The most time-consuming step when using stationary solvers is usually
finding a suitable initial approximation, which requires intelligent guesswork. Fortunately,
in simulations of low-current self-sustaining discharges this step can be performed in
a routine way using the resonance method. In this work, such integrated approach is
discussed in some detail and examples of its application to corona discharges of different
configurations and both polarities are shown.
As the current of a quasi-stationary discharge increases, the discharge will lose stability

and a non-stationary transition into another discharge form occurs. The loss of stability
against small perturbations may be studied by means of solving the eigenvalue problem
resulting from linear stability theory. In [10], this approach was used to study the stability
of the Townsend and glow discharges. An alternative approach to investigation of stability
is to apply a perturbation to a steady-state solution and to follow the development of the
perturbation by means of a time-dependent solver. This approach allows studying stability
against both small and finite perturbations. In this work, this approach is illustrated by
the example of the stability of a positive point-to-plane corona against perturbations of
various amplitudes.
The outline of the paper is as follows. A model of low-current discharges in high-

pressure gases is briefly described in Sec. 2. Computation of initiation of self-sustaining
gas discharges is considered in Sec. 3. The eigenvalue problem, which governs the dis-
charge initiation, is formulated and three different methods for its solution are given
and compared: direct solution of the eigenvalue problem for the self-sustainment voltage,
investigation of stability of the no-discharge solution, and the resonance method. An
integrated approach for calculation of low-current quasi-stationary discharges, which is
based on a combination of the resonance method and stationary solvers, is discussed in
Sec. 4. Investigation of stability of low-current quasi-stationary discharges by means of
eigenvalue and time-dependent solvers is considered in Sec. 5. A brief summary is given
in Sec. 6. In order not to overload the paper, some material has been combined into three
Appendixes: Appendix A, where the boundary conditions for drift-diffusion equations
are briefly discussed; Appendix B, concerned with plasmachemical processes and trans-
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port coeffi cients of low-current discharges in high-pressure air; and Appendix C, where
the effective reduced temperature of a pair of ion species in high electric fields is briefly
discussed.

2 Amodel of low-current discharges in high-pressures
gases

Mathematical ideas discussed in this work apply to both hydrodynamic and kinetic models
of gas discharges. For brevity, here the consideration is restricted to the conventional sys-
tem of hydrodynamic equations describing low-current discharges in high-pressure gases,
which comprises equations of conservation and transport of charged particles, excited
states, and radicals produced in the discharge, and the Poisson equation:

∂nα
∂t

+∇ · Jα = Sα, (1)

Jα = −Dα∇nα − Zαnα µα∇φ, (2)

ε0∇2φ = −e
∑
α

Zαnα. (3)

Here subscript α identifies different species produced in the discharge (positive and neg-
ative ions, the electrons, excited states, and radicals); nα, Jα, Dα, µα, Sα, and Zα are,
respectively, number density, density of transport flux, diffusion coeffi cient, mobility, net
volume rate of production, and charge number of species α; φ is the electrostatic poten-
tial; e is the elementary charge; and ε0 is the permittivity of free space. The source terms
Sα in the equations of conservation for electrons and positive ions include, in addition
to terms describing production of these species in collisional processes, the photoioniza-
tion term Sph. The transport equations (2) for the charged particles are written under
the so-called drift-diffusion approximation. This system of equations includes also other
relevant equations, such as equations governing the photoionization and the electron and
neutral-gas energy equations. If motion of the neutral gas plays a role, then the convective
terms have to be added to the lhs of Eqs. (1) and the system of equations includes also
the Navier-Stokes equations.
The system of equations is supplemented by usual boundary conditions. In particular,

boundary conditions for densities of charged particles on the surfaces of the electrodes and
dielectric surfaces (in case they border the active zone of the discharge) may be written
as described in Appendix A.
Most examples given in this work refer to low-current discharges in high-pressure dry

air and have been computed with the use of transport coeffi cients and a kinetic scheme
of plasmachemical processes described in Appendix B. The local-field approximation is
employed, so all the transport and kinetic coeffi cients, including those for the electrons, are
assumed to depend on the local reduced electric fieldE/N and the neutral-gas temperature
T . (Here E = |∇φ| is the electric field strength and N is the number density of the neutral
gas.) The kinetic scheme does not consider excited states or radicals and takes into account
one species of positive ions, which are designated A+, the electrons, and three species of
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negative ions, O−
2 , O−, and O−

3 , so that α = A+, e, O−
2 , O−, O−

3 in Eqs. (1)-(3). The
photoionization is evaluated by means of the three-exponential Helmholtz model [11]:

Sph(r) =

3∑
j=1

S
(j)
ph (r), (4)

with each of the terms satisfying the Helmholtz partial differential equation,

∇2S(j)ph (r)− (λjpO2)
2 S

(j)
ph (r) = −Ajp2O2I(r) (j = 1, 2, 3). (5)

Here Aj and λj are constants (parameters of the three-exponential fit function) given in
[11], pO2 is the partial pressure of molecular oxygen, and I(r) is the product of the prob-
ability of ionization of a molecule at photon absorption and the local photon production
rate. The latter is assumed to be proportional to Si(r) the rate of ionization of neutral
molecules by electron impact and I (r) is written as [12]

I(r) =

(
0.03 +

15.7 Td

E/N

)
pq

p+ pq
Si(r), (6)

where p is the neutral gas pressure, pq/ (p+ pq) is a quenching factor that accounts for the
non-radiative de-excitation of radiating states of nitrogen molecules due to collisions with
other molecules. The quenching pressure pq is set equal to 30 Torr [13, 14]. The examples
reported in this work are limited to low discharge currents, where the discharge-induced
heating and motion of the neutral gas are negligible, and refer to T = 300 K.
The boundary conditions for electron and ion densities are those specified at the end

of Appendix A. The electron emission flux is related to the flux of incident positive
ions by the effective secondary emission coeffi cient γ, which is assumed to characterize
all mechanisms of secondary electron emission (due to ion, photon, and excited species
bombardment) [3]. The rate of photoionization is set to zero at all solid surfaces, S(j)ph = 0
(j = 1, 2, 3), similarly to [15, 16].
The numerical modelling reported in this work was performed with the use of commer-

cial software COMSOL Multiphysics R©. The following interfaces were used: Transport of
Diluted Species, or TDS (equations of conservation and transport of charged species, Eqs.
(1) and (2)), Electrostatics (the Poisson equation, Eq. (3)), and Coeffi cient Form Partial
Differential Equations (the Helmholtz equations, Eqs. (5)). The streamline (Galerkin-
Petrov) and crosswind diffusion stabilizations, which are default options of the TDS in-
terface, were kept activated in all cases except where otherwise indicated. It should be
stressed that both stabilizations are consistent, i.e., the corresponding terms vanish when
the iterations have converged.

3 Computing initiation of self-sustaining gas discharges

3.1 The eigenvalue problem

The condition of initiation of a self-sustaining gas discharge, where the discharge voltage
is just suffi cient for the electron impact ionization to compensate losses of the charged
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particles, is well known for wide parallel-plate electrodes, where the applied electric field
is uniform and diffusion of the charged particles is of minor importance. The condition
reads

αd = ln (1/γ + 1) , (7)

where α is the Townsend ionization coeffi cient, d is the discharge gap width, and γ is
the effective coeffi cient of secondary electron emission from the cathode. An approximate
relation for other discharge configurations is obtained by replacing αd by the so-called
ionization integral, which is the line integral of α evaluated along the electric field line
that ensures the biggest value of this integral. Such approach is theoretically incomplete
and cannot be generalized, without invoking arbitrary assumptions, to account for poten-
tially important effects such as the photoionization or the presence of dielectric surfaces.
Nevertheless, it remains the main tool used in industrial applications; e.g., recent work
[17].
However, the problem of ignition of self-sustaining discharges may be solved by accu-

rate mathematical means and this solution is relatively simple [8]. At the ignition, the
charged particle densities are very low and the applied electric field is not perturbed by
plasma space charge, so the rhs of Eq. (3) may be dropped and this equation assumes the
form of the Laplace equation,

∇2φ = 0. (8)

Let us first assume that no dielectric surfaces border the active zone of the discharge, then
perturbation of the applied electric field by surface charges deposited on the dielectric
need not be considered as well. (The case of a discharge along a dielectric surface will
be considered in Sec. 4.3 below.) Therefore, the distribution of the electric field in the
gap, for a given gap geometry, is governed solely by the applied voltage U and may be
found by means of standard electrostatic simulations disregarding the presence of charged
particles in the gap. Of course, the electric field distribution is linear with respect to U
and it is suffi cient to perform the electrostatic simulation only once and then to scale the
computed electric field distribution to each required value of the applied voltage U . For
definiteness, it is assumed that the applied voltage is defined as the potential of the anode
with respect to the cathode, thus U > 0.
At the ignition, there is no need to consider nonlinear processes, such as reactive

collisions involving two or more particles produced in the discharge (ions, electrons, ex-
cited states, or radicals), which includes the stepwise ionization and the recombination of
charged particles. Thus, there is no need to consider excited states and radicals and it
is suffi cient to consider the equations governing the charged particle distributions in the
gap, Eqs. (1) and (2) with α referring to the charged species.
According to the conventional definition, the ignition voltage is the value of the applied

voltage U such that the applied electric field produces an ionization intensity just suffi cient
to compensate for the losses of charged particles, so a steady-state balance of the charged
particles can be reached. Therefore, the system of equations should be considered in the
stationary form, i.e., without derivatives with respect to time in Eqs. (1). The resulting
equations governing distributions of the ion and electron densities reads

∇ · Jα = Sα, (9)
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Jα = −Dα∇nα − Zαnα µα∇φ, (10)

where subscript α refers to the charged species (the ions and the electrons).
Since there is no need to consider nonlinear processes at the ignition, the source terms

Sα are linear with respect to the charged particle densities. Note that this implies that
the dependence of the photoionization rate Sph on the electron density ne is linear. This
is indeed the case as exemplified by Eqs. (4)-(6): I (r) the rate of ionization of neutral
molecules by electron impact is proportional to the local electron density ne (r), therefore
the dependence of Sph (r) on ne (r), while being non-local, is linear. Note that this is
the case also in models where the photoionization rate is computed by evaluation of an
integral (e.g., [6, 14, 18, 19]), rather than by solving partial differential equations.
Eqs. (9)-(10) are supplemented by Eqs. (4)-(6) or similar and boundary conditions

Eq. (A6) with ξa = ξe = 1/2 or similar. The obtained boundary-value problem, which is
considered for a given distribution of the electric field in the gap, governs distributions of
the ion and electron densities at inception and is linear (with respect to these densities).
We consider conditions where there is no external ionizing radiation and the ionization

mechanisms are direct ionization by impact of electrons, accelerated by the applied electric
field, and photoionization by photons produced in the discharge; there is no thermionic,
thermo-field, and field electron emission from the cathode, as well as no electron photoe-
mission caused by external radiation. Then the above-described linear boundary-value
problem governing distributions of the ion and electron densities in the gap is homoge-
neous. Since the problem is considered for a given distribution of the electric field in the
gap, the applied voltage U is a control parameter of the problem. The aim is to find a
value U = U0 such that the problem describes the inception of a self-sustaining discharge,
i.e., a low-current steady-state discharge.
From the mathematical perspective, this is a boundary-value problem for a system

of partial differential equations (or integro-differential equations, if the photoionization
rate is computed by evaluation of an integral) and this problem is linear (with respect
to the charged particle densities) and homogeneous (no external ionization terms). For
all values of the applied voltage U , the problem admits a trivial solution: the ion and
electron densities are zero at all points in the gap, which corresponds to a situation where
no discharge has been ignited. The task is to find a value of U such that the problem
admits, in addition to the trivial solution, also a nontrivial one. In mathematical terms,
this is an eigenvalue problem and U is the eigenparameter.
Thus, the ignition of a self-sustaining discharge is described by an eigenvalue boundary-

value problem for a system of partial differential or integro-differential equations governing
distributions of the ion and electron densities. The physical sense of the problem is that the
applied voltage should be such that direct ionization by the impact of electrons accelerated
by the applied electric field and photoionization by photons generated in the discharge
are just suffi cient to compensate for the losses of charged particles. In agreement with
the above, in the special case of wide parallel-plate electrodes the formulated eigenvalue
problemmay be reduced to one dimension and will lead to the well-known self-sustainment
condition (7), provided that similar simplifications are applied: no diffusion, one ion
species, no photoionization.
There is one more special case where the applied electric field can be considered uni-

form and the formulated problem may be reduced to one dimension: the problem of
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self-sustainment field in the cross section of a plane or cylindrical positive column of a
long low-current discharge. The formulated problem takes a form similar to the well-
known eigenvalue problem for an ordinary differential equation describing the ambipolar
diffusion of charged particles in the cross section of a positive column under the assump-
tion of quasi-neutrality; e.g., [4]. The solution to the latter problem is well known: the
cosine for a plane column and the zero-order Bessel function for a cylindrical column; re-
spectively, Eqs. (5.2.26), (5.2.27) and (5.2.35), (5.2.36) from [4]. At the discharge ignition,
the transversal electric field is zero, the diffusion is free and not ambipolar, and there is
no quasi-neutrality. Therefore, the above-cited solution [4] is valid for the distribution
of the election density ne at the discharge ignition provided that the ambipolar diffusion
coeffi cient is replaced by the electron diffusion coeffi cients De. The ion density exceeds
ne by the factor De/Di, where Di is the diffusion coeffi cient of the ions.
In the general case, the formulated eigenvalue problem for the ignition of a self-

sustaining discharge is multidimensional and its numerical solution is not quite trivial.
Three numerical methods for solving this problem are discussed in the next sections.

3.2 Direct solution of the eigenvalue problem for the self-sustainment
voltage

The most direct approach to solving the eigenvalue problem, formulated in the preceding
section and governing the ignition of a self-sustaining discharge, is to apply an appropriate
standard eigenvalue solver directly to the eigenvalue problem as it was formulated, con-
sidering U as the eigenparameter. The solver will return a set of eigenvalues (spectrum)
and eigenfunctions associated with each of the eigenvalues.
Each of the eigenfunctions is a vector with each of the components describing a dis-

tribution of the number density of one of the ion species or the electrons. Some of the
eigenfunctions have components all of which are nonnegative (or nonpositive, which is
equivalent since eigenfunctions are defined to the accuracy of constant factors) at all
points of the computation domain, i.e., the discharge gap. Eigenvalues associated with
such eigenfunctions may be physically meaningful. Other eigenfunctions have one or more
components that change sign in the discharge gap. Since the components of the eigenfunc-
tions describe distributions of charged particle species, the eigenvalues, with which such
eigenfunctions are associated, have no physical meaning. There can exist also eigenvalues
associated with eigenfunctions that have some of their components positive and others
negative. Such eigenvalues have no physical meaning as well.
In addition, most eigenvalues are complex (and appear in pairs of complex conjugate

values), and others are real. Since the eigenparameter is the applied voltage U , complex
eigenvalues have no physical meaning, while real ones may be physically meaningful.
One of the eigenvalues must simultaneously be real and associated with an eigenfunc-

tion with all the components being nonnegative at all points of the computation domain.
This eigenvalue will give the voltage of ignition of a self-sustaining discharge (for brevity,
the term ’self-sustainment voltage’will be also used).
This approach requires the use of an eigenvalue solver for boundary-value problems for

systems of partial differential or integro-differential equations. For example, an eigenvalue
solver for boundary-value problems for systems of partial differential equations provided
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by commercial software COMSOL Multiphysics R© is used in this work. A more laborious
option is to first manually discretize the partial differential or integro-differential equa-
tions, thereby converting the problem into an eigenvalue problem for a system of linear
algebraic equations, for which solvers are more easily accessible.

3.3 Investigation of stability of no-discharge solution

The second approach is indirect. Let us return to the full problem considered in Sec. 2,
which includes, in particular, the Poisson equation. This problem admits two steady-state
solutions. Firstly, there is a solution with the ion and electron densities equal to zero at all
points in the gap, and with the electrostatic potential governed by the Laplace equation.
This solution describes a situation where voltage is applied to the electrodes, however no
discharge has been ignited. Of course, the discharge current I is zero for this solution.
It should be stressed that although the ion and electron densities equal to zero do not
represent a solution to the eigenvalue problem formulated in Sec. 3.1 (which, by definition,
must be non-trivial), the zero densities do represent, jointly with the Laplacian potential
distribution, a formal solution of the full problem for any value of the applied voltage U .
Secondly, there is a solution with non-zero charged particle densities and the electrostatic
potential governed by the Poisson equation. This solution describes the self-sustaining
discharge and exists for all values of the discharge current I, starting from infinitesimal
values at the inception.
A graphic illustration is shown in Fig. 1. The current-voltage characteristic (CVC),

described by the no-discharge solution, i.e., the one with the zero ion and electron den-
sities, coincides with the positive part of the ordinate axis (I = 0, U > 0). The solution
with non-zero densities, describing the self-sustaining discharge, branches off from the
former solution at the ignition point (I = 0, U = U0). In mathematical terms, this is
a bifurcation point. Points of bifurcation of steady-state solutions are neutrally stable.
Therefore, the spectrum of stability of the no-discharge solution at U = U0 must include
the zero eigenvalue. It is known from experiment that the no-discharge solution is stable
for U < U0 and unstable for U > U0. Note that the no-discharge solution, of course,
cannot be realized experimentally and cannot be calculated with a time-dependent solver
in the range U > U0, where it is unstable. However, it should be emphasized once again
that the no-discharge solution satisfies the full problem for any applied voltage U and can
be trivially computed by means of a stationary solver for any U including U > U0.
The stability of the no-discharge solution is governed by a problem coinciding with the

eigenvalue problem formulated in Sec. 3.1 except that the time derivative terms ∂nα/∂t
in the charged particle conservation equations (9), which were omitted in the formulation
of the eigenvalue problem, are taken into account. The time dependence of all charged-
particle densities nα is assumed to be exponential and described by the same factor eλt,
where λ is a parameter to be determined (the perturbation growth increment): nα (r, t) =
nα1 (r) eλt. The obtained time-independent boundary-value problem for a system of linear
homogeneous partial differential (or integro-differential) equations for nα1 (r) represents
an eigenvalue problem with λ being the eigenparameter. Its spectrum, i.e., the set of
λ values, computed for a given U value, governs the stability of the solution with the
zero ion and electron densities, describing the no-discharge situation for this U . It should
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self­sustaining discharge

I=0, U>U0: no
discharge, unstable

I=0, U<U0: no
discharge, stable

Bifurcation pointU0

0
0

Figure 1. Schematic of current-voltage characteristics at inception. The solution with non-
zero ion and electron densities, describing the self-sustaining discharge, branches off from the
solution with the zero densities, describing the no-discharge situation, at the bifurcation point
(I = 0, U = U0) marked by the cicle.

be stressed that this eigenvalue problem does not coincide with the eigenvalue problem
formulated in Sec. 3.1; in particular, the eigenparameter is different: λ instead of U .
Most eigenvalues are complex. Such eigenvalues describe perturbation modes that

grow or decay in time in an oscillatory manner. Other eigenvalues are real and describe
perturbation modes that grow or decay monotonically in time.
The spectrum is computed, by means of an appropriate eigenvalue solver, for a number

of values of the discharge voltage U , starting from a value that is surely lower than the
self-sustainment voltage U0. Then U is increased in small increments.
At low applied voltages U , all the eigenvalues must be positioned in the left half-plane;

in other words, real parts of all the eigenvalues must be negative, which means that all
perturbation modes decay in time. As U increases, one of the eigenvalues must cross
the origin while the others still remain in the left half-plane. All the components of the
eigenfunction associated with the zero eigenvalue must be nonnegative. This crossing
represents the point of neutral stability or, in other words, the bifurcation point being
sought, and the corresponding U value is the self-sustainment voltage U0.
The spectrum of stability can be computed using the same two options that were

described in the last paragraph of the previous section. Note that in [20] the second
option was employed in order to determine the self-sustainment voltage of the parallel-
plate discharge.
Note that this approach is in essence an alternative way of solving the eigenvalue

boundary-value problem formulated in Sec. 3.1; in contrast to the direct approach, which
is described in Sec. 3.2 and in principle gives the whole spectrum (set of U values) of the
eigenvalue boundary-value problem formulated in Sec. 3.1, this approach is designed to
find only one U value, namely, the one that corresponds to the self-sustainment voltage.
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3.4 The resonance method

The third approach is physics-based and may be described as follows. The stationary
boundary-value problem governing distributions of the ion and electron densities at in-
ception, formulated in Sec. 3.1, is considered and the equations of conservation of the
electrons and one of the positive ion species are supplemented by a term describing an
external ionization source. In other words, Eqs. (9) for the electrons (α = e) and one of
the positive ion species (α = i) are replaced by the following equations:

∇ · Je = Se +W, (11)

∇ · Ji = Si +W, (12)

where W is the external ionization term. This term does not depend on the particle
densities, in particular, on the electron density, nor on the applied voltage, and is specified
more or less arbitrarily. For example, it may be set constant in space in one-dimensional
(1D) problems and a Gaussian function with a maximum on the discharge axis is a natural
choice in axially symmetric problems.
The obtained stationary boundary-value problem describes the non-self-sustained dis-

charge, generated in the same plasma-producing gas and the same electrode configuration.
The problem is solved for different values of the applied voltage U . On physical grounds,
one can expect that a kind of resonance will appear when U becomes equal to the self-
sustainment voltage.
Note that the problem is linear and the external ionization source W is the only

inhomogenous term. Therefore, the absolute values of W are irrelevant as far as the task
is restricted to the calculation of the self-sustainment voltage: the scaling of W affects
the scaling of the number densities of the charged particles and does not affect the self-
sustainment voltage. On the other hand, some care in the choice of the scaling of W is
useful if this method is used as a part of the integrated approach for modelling quasi-
stationary low-current discharges in the whole range of its existence starting from the
inception; a comment on this point is provided in Sec. 4.1.
The stationary boundary-value problem describing the non-self-sustained discharge,

being linear (and inhomogenous), may be routinely solved by means of ready-to-use
solvers; hence no need for manual discretization. For example, a linear solver for boundary-
value problems for systems of partial differential equations provided by COMSOLMultiphysics R©
is used in the modelling reported in this work. Note that COMSOL automatically acti-
vates the nonlinear solver option in the case where the default streamline and/or crosswind
diffusion stabilization is kept activated in the TDS interface, since the stabilization terms
appearing in the species conservation equations are nonlinear. However, the number of
iterations required is very small, typically no more than two, so the procedure remains
the same whether stabilization is activated or not.
Similarly to the previous one, this method is in essence another way to solve the eigen-

value boundary-value problem for the system of partial differential or integro-differential
equations, formulated in Sec. 3.1, which finds not the whole spectrum but rather only the
self-sustainment voltage. The method was introduced and termed the resonance method
in the preceding work [8]. Of course, the very idea of finding a real eigenvalue by varying
the eigenparameter and searching for this or that kind of resonance is quite obvious. For
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example, a change of sign of the determinant of the system of algebraic equations obtained
by a finite-difference discretization of a boundary-value problem was used in [21, 22] and
[23] as an indication of bifurcation of regimes of current transfer to, respectively, cold
cathodes of glow discharges and hot thermionically-emitting cathodes of arc discharges.

3.5 Comparing different methods

In order to illustrate the above three methods, it is natural to apply them to the most basic
1D model of a parallel-plate discharge. Let us consider, as an example, a microdischarge
in xenon at the pressure of 30 Torr. The interelectrode gap is d = 0.5 mm. Calculations
have been performed in the framework of a simple model accounting for a single positive
ion species and the electrons. Transport and kinetic coeffi cients are the same as in [24].
The secondary electron emission coeffi cient γ was set equal to 0.03. The simulations have
been performed both with and without the streamline and crosswind diffusion stabilization
on two different uniform numerical meshes, one with 170 and the other with 3000 mesh
elements.
Let us first consider results obtained by means of the resonance method. The CVC

of the non-self-sustained discharge, j (U) (here j is the current density) was computed
numerically in the framework of this method for an external ionization source term that
was uniform in space, and is depicted in Fig. 2 by solid lines. There is a singularity
at U = 175.05 V, after which the solution loses its physical significance: the ion and
electron densities turn negative, as well as the discharge current. This is the expected
resonance-like phenomenon, and the U value at which it happens is the self-sustainment
voltage.
An approximate analytical description of the CVC of the parallel-plate non-self-sustained

discharge may be obtained by neglecting the diffusion of the charged particles and is given
by the formula

j =
eW (1 + γ)

(
eαd − 1

)
α [1− γ (eαd − 1)]

. (13)

The CVC described by this equation duly conforms to the CVC given by the numerical
calculations, shown in Fig. 2. In particular, there is a singularity, after which j turns nega-
tive. The value of U at which the singularity occurs is obtained by setting the denominator
of Eq. (13) equal to zero, which leads to the conventional condition of self-sustainment
Eq. (7). The value of U determined by this condition is approximately 177.20 V, which
duly conforms to the above-mentioned value of the self-sustainment voltage of 175.05 V,
computed numerically. Note that the 1.2% difference is due to the neglect of diffusion in
Eq. (13).
Thus, the expected resonance-like behaviour of characteristics of the non-self-sustained

discharge, which should occur at an applied voltage coinciding with the self-sustainment
voltage, is indeed present and may be readily identified as a singularity in the current-
voltage characteristic I (U), accompanied by a change of sign of current. Note that 170
mesh elements were suffi cient to obtain the self-sustainment voltage with five significant
digits, hence the method is not too sensitive with respect to the mesh. Moreover, the
computed self-sustainment voltage was the same with five significant digits regardless of
whether stabilization was activated or not.
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Figure 2. Solid: current density-voltage characteristic of the non-self-sustained discharge, the
resonance method. Dashed: eigenvalue U = 175.05V, direct solution of the eigenvalue problem
for the self-sustainment voltage. Dotted, circle: the perturbation growth increment and the
point of neutral stability of the no-discharge solution. Parallel-plate discharge in Xe, 30Torr,
0.5mm gap.

The real spectrum computed in the framework of the direct solution of the eigenvalue
problem for the self-sustainment voltage (the method described in Sec. 3.2) comprised
two eigenvalues, U = 15.633 V and U = 175.05 V. The ion and electron densities de-
scribed by the eigenfunctions associated with both of the eigenvalues were nonnegative at
all points of the gap and both eigenvalues up to five significant digits were not affected by
either the change in the number of mesh elements, or the activation of stabilization. (The
calculations also returned at least one more real eigenvalue, however that eigenvalue was
constantly increasing with refinements of the numerical grid.) The bigger one of the two
eigenvalues conforms very well to the above value of the self-sustainment voltage com-
puted by means of the resonance method. Note that the product αd, evaluated using the
bigger eigenvalue, equals 3.47, while ln (1/γ + 1) = 3. 54 for γ = 0.03. Thus, the bigger
eigenvalue approximately satisfies the conventional self-sustainment condition Eq. (7) as
it should. (The small discrepancy is due to the neglect of diffusion in this condition.) On
the other hand, αd = 1.36× 10−3 when evaluated using the smaller eigenvalue. Thus, the
eigenvalue U = 15.633 V is way too low to fulfil the self-sustainment condition. Therefore,
this eigenvalue can only be an artifact. Surprisingly, no warning signs appeared in the
course of the numerical calculations; it should be stressed, in particular, that this eigen-
value did not depend on the mesh. Additional comments on this point are provided later
in this section.
The spectrum of stability of the solution with the zero ion and electron densities

(the no-discharge solution), computed in the framework of the method described in Sec.
3.3, includes a real eigenvalue associated with an eigenfunction with both components
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nonnegative at all points of the gap. There is also a large number of complex conjugate
eigenvalues, all of which were associated with eigenfunctions whose components change
sign in the computation domain. The real eigenvalue is plotted in Fig. 2 by the dotted
line. As expected, it is negative at low voltages and then changes sign. The latter occurs
at U = 175.05 V and the corresponding point is marked in Fig. 2 by the circle; this is
the desired point of neutral stability or, in other words, the bifurcation point, and the
corresponding U value is the self-sustainment voltage U0. This value was not affected by
the change in the number of mesh elements; on the other hand, the method appeared not
to work with the stabilization activated.
Results obtained in this work for the spectrum of stability of the no-discharge solution

conform to results of [20]. Only one real eigenvalue was found in [20], which is plotted in
Fig. 5 of [20]. The components of the eigenfunctions associated with the real eigenvalue,
which are plotted in Fig. 6 of [20], do not change sign. Eigenfunctions associated with the
eigenvalue possessing the second least negative real part, which is complex, are plotted in
Fig. 7 of [20]; these eigenfunctions do change sign.
Thus, all three methods described in Secs. 3.2-3.4 gave the same value for the self-

sustainment voltage, U = 175.05 V, as they should, with the exception of the extraneous
root given by the direct solution of the eigenvalue problem.
As another example, consider the results of numerical simulation of the ignition of a

positive wire-to-plane corona discharge under conditions of experiment [25]: air, 1 atm,
wire diameter 89µm, wire-to-plane distance 10 mm. The self-sustainment voltage was
computed by means of the direct numerical solution of the eigenvalue problem and by
means of the resonance method, on two different numerical meshes, one with 165 240 and
the other with 534 184 degrees of freedom, with and without stabilization. The direct
numerical solution of the eigenvalue problem gave the self-sustainment voltage of 4278.5
and 4278.3 V on the two meshes with stabilization and 4284.4 and 4285.3 V without
stabilization. No extraneous roots have been detected, in contrast to the above example
of parallel-plate discharge. In the framework of the resonance method, a singularity in
the current-voltage characteristic of the non-self-sustained discharge with a change in the
sign of the current, similar to that shown by the solid lines in Fig. 2, was found. The self-
sustainment voltage of 4278.0 and 4278.2 V with stabilization and 4282.2 and 4280.7 V
without stabilization was obtained. All the above values are close to each other and to
the experimental ignition voltage, which is approximately 4.3 kV as seen in Fig. 7 of [25].
Let us now compare the three methods from the methodological point of view. The

methods are mathematically equivalent as far as computation of the self-sustainment
voltage is concerned, so the question is which method is easier to implement and use, and
which method has wider applicability.
The method based on the direct numerical solution to the eigenvalue problem requires

computing and analyzing the spectrum only once, while the stability method requires
doing this several times (for different U values). Thus, the stability method is more
laborious. On the other hand, the method of direct solution of the eigenvalue problem
must be used with caution in view of the potential appearance of extraneous roots, as in
the example of parallel-plate discharge. This is an unfortunate drawback of a theoretically
simple method. Perhaps this diffi culty could be overcome by further fine-tuning the
eigenvalue solver used or by using a different solver. On the other hand, this diffi culty
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is a manifestation of a general trend: finding the spectrum by means of an eigenvalue
solver, required in the framework of the first and second methods, is a nonlinear task and,
as such, requires care in certain cases; in particular, distinguishing between physical and
artificial eigenvalues is not always easy.
In contrast, the stationary boundary-value problem, describing the non-self-sustained

discharge in the framework of the third (resonance) method, is linear and its solution
is straightforward. The self-sustainment voltage U0 in the resonance method has to be
identified from computations of the non-self-sustained discharge for different U , rather
than directly, as in the first method. It should be stressed, however, that the pattern of
the CVCs of the non-self-sustained discharge, which is shown by the solid lines in Fig. 2
and comprises a singularity at U = U0 with the subsequent change of sign of current, has
been observed in every case where the resonance method has been applied. This includes
also simulations not shown in this paper. In all the cases, the resonance, and thus the U0
value, were readily identifiable and the procedure was straightforward, fast, and reliable.
Typical calculations for 2D geometries take about 10 min on a desktop computer.
An important advantage of the resonance method is its physical transparency. In

particular, it allows the use of this method not only for simulations of ignition of a self-
sustaining discharge, but also as a module of a more general code for the modelling of
quasi-stationary (self-sustained) discharges. This is described in the following sections.
In summary, the resonance method is the method of choice for calculation of the

ignition of self-sustaining discharges, at least for now. The method has given useful results
in a wide range of conditions and complex geometries, e.g., it was used for investigation
of discharge ignition in air between concentric-sphere and concentric-cylinder electrodes
with microprotrusions of different shapes on the surface of the inner electrode in a wide
range of air pressures [26]. Investigation of discharge ignition along a dielectric surface is
considered in Sec. 4.3 below.

4 Integrated approach for calculation of low-current
quasi-stationary discharges

As discussed in the Introduction, stationary solvers represent an appropriate tool for
the modelling of quasi-stationary discharges and offer important advantages over time-
dependent solvers. The most time-consuming step when using stationary solvers is usually
finding a suitable initial approximation, which requires intelligent guesswork. Fortunately,
in simulations of low-current self-sustaining discharges this step can be performed in a
routine way using the resonance method. The resonance method provides a very accurate
first approximation for a steady-state solution at a very low current, describing the onset
of the self-sustaining discharge. Once this solution has been computed, it can be used as
a starting point for the simulations with the discharge current being gradually increased.
The solution for each current serves as an initial approximation for simulations with the
next current value.
In this way, one obtains an integrated approach for modelling quasi-stationary low-

current discharges in the whole range of its existence starting from the inception. This
integrated approach is described in this section and examples of its application are given.
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4.1 Combining the resonance method and stationary solvers

The procedure is illustrated by the flow chart shown in Fig. 3 and may be described as
follows. At the first step, the non-self-sustained discharge is computed as described in
Sec. 3.4. Remind that, as discussed in Sec. 3.1, the plasma space charge is neglected
at this step, i.e., the rhs of the Poisson equation Eq. (3) is dropped or, in other words,
the Poisson equation (3) is replaced by the Laplace equation (8). Nonlinear processes,
such as reactive collisions involving two or more particles produced in the discharge, are
neglected as well. The discharge voltage U is increased in small increments ∆U until the
discharge current becomes negative. Let us designate by U1 the highest voltage for which
the current is still positive and by I1 the corresponding current.
The second step consists in recalculation of the solution obtained at the first step

for U = U1, but with the discharge current being the control parameter instead of the
voltage. This amounts to solving the same problem as at the first step, but considering
the discharge voltage as an unknown that has to be found from the condition that the
discharge current (an integral characteristic of the solution) takes the given value I1.
This problem is nonlinear and, in principle, requires iterations. However, since the initial
approximation being used represents the exact solution for I = I1, only one iteration is
needed without damping.
At the third step, the solution for I = I1 is recalculated with the external ionization

termW in Eqs. (11) and (12) switched off. The convergence is very fast provided that ∆U
is suffi ciently small (typically, no more than three iterations are needed without damping
if ∆U does not exceed 1% of U). The discharge voltage will slightly increase (by an
amount smaller than ∆U) and the obtained value will represent a little more accurate
estimate of the self-sustainment voltage.
At the fourth step, the solution for I = I1 is recalculated with account of the space

charge, i.e., with the Laplace equation replaced by the Poisson equation, and with account
of all relevant nonlinear processes and with the stabilization activated as needed (if it has
not been activated right from the first step). The change in U will be very small and only
one iteration is needed provided that I1 is small enough, say, in the order of nanoamps
or smaller, which can be ensured by rescaling the external ionization term W , used in
the resonance method. As the outcome of this step, one obtains a complete solution
describing the onset of the self-sustained discharge.
At the fifth, and final, step, the quasi-stationary low-current discharge is computed

in the whole range of its existence. The simulations are performed with the discharge
current being gradually increased. The solution describing the onset of the self-sustained
discharge, obtained at the previous step, is used as a starting point, and the solution
for each current is used as an initial approximation for simulations with for next current
value.
We conclude this section with a few practical hints. In gas discharge modelling, the

species conservation and transport equations are frequently solved in the logarithmic for-
mulation (e.g., this option is available in the Plasma module of COMSOLMultiphysics R©),
where the dependent variables are logarithms of the species number densities. The loga-
rithmic formulation ensures that the number density of any of the species is never negative.
However, such formulation introduces additional nonlinearity and was found to be less
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Figure 3. Integrated approach for modelling of quasi-stationary low-current discharges.
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effi cient for steady-state modelling than the original formulation (the one with the depen-
dent variables being the species number densities). The modelling reported in this work
has been performed in the original formulation and no sizable negative values of species
densities have appeared provided that the numerical mesh is not too coarse.
It is essential that the code allows specifying not only the discharge voltage as a con-

trol parameter but also the discharge current, with the possibility of an easy and seamless
switching between the two. A standard way to specify the discharge current in gas dis-
charge modelling is an implicit one, by means of introducing an external circuit comprising
a voltage source and a ballast resistance. In COMSOL Multiphysics R©, an alternative is
available: one can use the "Global Equation node" option to specify discharge current
directly, without introducing an external circuit.
The modelling of the quasi-stationary low-current discharge in the whole range of its

existence (the fifth above-described step) starts with the discharge current I being the
control parameter. As I gradually increases, it may be helpful to switch the control
parameter to U , in order to accelerate convergence. When simulating corona discharges,
this can usually be done when the discharge voltage has increased by about 200 V from
the ignition voltage.
It often happens in modeling that iterations converge for a value of the control para-

meter, but fail to converge for the next value, no matter how small the increment of the
control parameter. Since a solution can turn back or join another solution but cannot just
disappear, such a break-off represents a failure of the method. The most frequent reason
is that there is a region of fast variation, which is not adequately resolved by the numer-
ical mesh being used (e.g., the corona attachment to the electrode has expanded and is
no longer adequately resolved). A refinement of the mesh solves the problem. Adaptive
mesh refinement is a powerful tool.
The second most frequent reason is that an extreme point of the CVC or a turning

point has been encountered: a code cannot pass through these points if operated with,
respectively, U or I as a control parameter. An obvious fix is to switch the control
parameter. If the CVC has a complex form, the control parameter has to be switched
several times in order to compute the whole range of existence of the steady-state solution.
On the other hand, not all sections of a complex-form CVC are stable and stability analysis
is indispensable. An example of such a situation is encountered in Sec. 5 below.

4.2 Coaxial and point-to-plane corona discharges

As examples, CVCs of positive and negative corona discharges in atmospheric-pressure
air, computed by means of the integrated approach described in the preceding section,
are shown in Figs. 4 and 5 for the concentric-cylinder and point-to-plane corona con-
figurations, respectively. Also shown are time-averaged CVCs obtained experimentally.
Agreement between the modelling and the experiment is quite good.
Computed distributions of the excitation rate of radiating nitrogen states N2 (C),

which are the main source of visible radiation emitted by air coronas, are shown in Fig. 6
for the point-to-plane corona and various applied voltages of both polarities, along with
the corona images recorded in the experiment. It can be seen that the modelling correctly
reproduces the features of the radiation intensity distributions for both polarities.
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Figure 4. Current density-voltage characteristic of positive and negative coaxial corona dis-
charges in concentric-cylinder geometry. Air, 1 atm, inner electrode radius 0.070 cm, outer elec-
trode radius 10.35 cm. Lines: modelling. Points: experiment [27]. Solid line, squares: positive
corona. Dashed line, circles: negative corona. jL: linear current density. Reproduced with
permission from Plasma Sources Sci. Technol. 29, 125005 (2020). Copyright IOP Publishing
2020.
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Figure 5. Current-voltage characteristics of positive (a) and negative (b) corona discharges in
point-to-plane geometry for various values of the point-to-plane distance d. Air, 1 atm, Points:
experiment. Lines: modelling. Adapted from [28].
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Figure 6. Images of point-to-plane corona discharges and computed distributions of the rate
of excitation of radiating N2 (C) levels (in m−3 s−1, logarithmic scale). Air, 1 atm, point-to-
plane distance 14mm. Upper two rows: positive corona. Bottom two rows: negative corona.
Reproduced with permission from IEEE Trans. Plasma Sci. 48, 4080 (2020). Copyright IEEE
2020.
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The CVCs shown in Figs. 4 and 5 have been computed by means of stationary solvers
in the framework of the approach described in the preceding section. In principle, the
CVC of the positive coronas, shown in Figs. 4 and 5(a), could be computed also by means
of time-dependent solvers, which are the usual tool in gas discharge modelling. However,
the switching from a stationary solver to a time-dependent one causes a very significant
increase of the computation time, typically by several orders of magnitude, as documented
in [28]. This is unsurprising, given that the mesh element size in the modelling was in the
order of fractions of micrometer near the surface of the corona electrode, so the Courant-
Friedrichs-Lewy criterion or analogous limitations require extremely fine time stepping.
On the other hand, an attempt to compute the time-averaged CVCs of the negative

coronas shown in Fig. 5(b) by means of a time-dependent solver, reported in [28], was
unsuccessful. This is an indication that the glow negative corona is unstable in these
conditions. This conclusion is consistent with the well-known fact that the negative DC
corona in air usually operates in a pulsed regime: the current waveform reveals the so-
called Trichel pulses. Therefore, the agreement between the steady-state modelling and
experimental data seen in Figs. 4, 5(b), and 6 shows that a steady-state model provides a
reasonably accurate description of time-averaged characteristics of pulsed negative coro-
nas. Another example of an agreement of such type may be found in [29]: the electric
field distribution in a negative corona in an axially symmetric concentric-cylinder gap in
air, computed by means of a steady-state model, was shown to be in good agreement
with the time-averaged measurements [30], performed in a regime with repetitive Trichel
pulses [31].
Thus, in the case of a pulsed corona, time-dependent solvers, while being an adequate

tool for studies of spatiotemporal evolution of individual pulses (e.g., [31—35]), cannot be
used for direct calculation of time-averaged characteristics of the discharge. The latter
can be conveniently computed by means of stationary solvers in the framework of the
integrated approach being used in this section.

4.3 Discharge along a dielectric surface

Consider now a case where the discharge active zone is in contact with a dielectric surface.
The formulation of the eigenvalue problem describing the ignition of a self-sustaining
discharge, given in Sec. 3.1, needs to be slightly modified in such cases, as well as the
procedure of solving it by means of the resonance method.
Continuing to consider low-current quasi-stationary discharges (which implies, in par-

ticular, that the time of variation of the applied voltage is much longer than the ion drift
time), one can treat surface charges on a dielectric surface as quasi-stationary. Therefore,
the surface is under the floating potential and the boundary condition for the electric
field follows from the condition of the normal component of the local current density
being equal to zero at each point of the surface. This boundary condition is linear and
homogenous with respect to the ion and electron densities. Therefore, while distributions
of the ion and electron densities in low-current quasi-stationary self-sustained discharges
vary proportionally to the discharge current I, the electric field distribution is independent
from I. This is similar to what happens in the case where no dielectric surfaces border
the active zone of the discharge, considered in the preceding sections. It is this indepen-
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dence of the electric field distribution from I that makes the concept of self-sustaining
(ignition) voltage applicable in the presence of dielectric surfaces. The difference from
the no-dielectric case is that the electric field in the presence of a dielectric is coupled to
distributions of the charged particles and cannot be computed independently.
Thus, one needs to consider a stationary boundary-value problem involving partial

differential and possibly also integro-differential equations, governing distributions of ions
and electrons in the gap, and the Laplace equation governing the electrostatic potential,
with the aim to determine the value U = U0 of applied voltage such that the problem
admits a non-trivial solution for the particle densities. Note that this problem becomes
ill-posed in the no-discharge situation, where the ion and electron densities are zero and
the boundary condition of zero normal component of the current density at the dielectric
becomes trivially satisfied and brings no information concerning the electric field. There-
fore, it is unclear whether this problem can be solved by means of standard eigenvalue
solvers. However, it can be effi ciently solved by means of the resonance method.
The procedure is as follows. The first and second steps of the procedure described

in Sec. 4.1 are performed with the boundary condition of zero normal component of the
electric field at the dielectric surfaces (instead of zero normal component of the current
density). As in the case where no dielectric is present, the electric field distribution is
decoupled from the ion and electron distributions and is linear with respect to U , so it is
suffi cient to perform the electrostatic simulation only once.
At the next step, the obtained solution for I = I1 is recalculated with the boundary

condition of zero normal electric field at the dielectric surfaces being replaced by the
condition of zero normal component of the current density. This involves solving the
equations governing the distributions of the ions and the electrons in the gap and the
Laplace equation for the electrostatic potential, and these equations are now coupled
through the boundary condition of zero normal current density. The problem is non-linear
and the distributions computed at the previous steps are used as an initial approximation.
Then the third to fifth steps of the procedure described in Sec. 4.1 are performed and

thus the discharge is computed in the whole range of its existence. These steps do not
need to be modified due to the presence of the dielectric and are performed in the same
way as described in Sec. 4.1.
As an example, Fig. 7 shows the self-sustainment voltage computed by means of the

above procedure (excluding the fourth and fifth steps of Sec. 4.1) for an axially symmetric
configuration shown in the insert: two disc electrodes separated by a cylindrical dielectric
surrounded by atmospheric-pressure air. Note that the dielectric is depicted as a massive
cylinder, however this is irrelevant, as is its dielectric constant, since the equations, being
stationary, are solved only in the air-filled region. The coeffi cient of secondary electron
emission from the cathode and the dielectric was 0.03. The simulations have been per-
formed for the dielectric radius R in the range from 3 to 8.2 mm. The upper edge of
the positive electrode and the lower edge of the negative electrode were rounded with a
0.2 mm radius as indicated in the insert. For R ≥ 7.7 mm (i.e., when the dielectric sticks
out by 0.2 mm or more, which is the case shown in the insert), the edges of the dielectric
were rounded with a 0.2 mm radius as well. For R ≤ 7.3 mm (i.e., in the case where the
dielectric is recessed by 0.2 mm or more), there were roundings at the lower edge of the
positive electrode and the upper edge of the negative electrode, but not at the edges of
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Figure 7. Discharge between two disc electrodes separated by a cylindrical dielectric. Air,
1 atm. Circles, crosses: self-sustainment voltage, modelling with the boundary condition at
the dielectric surface being zero normal current density (circles) or zero normal electric field
(crosses). Triangle: breakdown voltage, experiment [36].

the dielectric. Finally, for 7.3 mm < R < 7.7 mm there were roundings at the dielectric
edges as well as at the lower edge of the positive electrode and the upper edge of the
negative electrode. The radius of the roundings was 0.2 mm, and the centers of curvature
were positioned in such a way that the surfaces of the electrode and dielectric formed
an angle of 90 ◦ at the triple junction. Thus, the contact angle between the metal and
dielectric surfaces at the triple junction was 90 ◦ in all the geometries, with the aim to
limit the local electric field.
It is seen from Fig. 7 that there is little difference between the values of the self-

sustainment voltage computed with the boundary condition at the dielectric surface being
zero normal current density or zero normal electric field. For R . 5 mm, when the
dielectric is away from the edges of the electrode discs, the self-sustainment voltage is
virtually constant and equals approximately 10 kV. This value is in good agreement with
the experimental breakdown voltage for R = 3.5 mm reported in [36], which is represented
in Fig. 7 by a triangle. Note that this value is lower than the corresponding Paschen value
(approximately 11 kV), which is consistent with the discharge being not plane-parallel
(the breakdown path computed for R . 5 mm represents an arc attached to the electrode
edges). As R increases, i.e., as the dielectric approaches the active zone of the discharge,
the self-sustainment voltage decreases and attains a minimum when R becomes equal to
the electrode radius. For higher R, the self-sustainment voltages starts increasing again.
There seem to be no quantitative experimental data published on the effect of dielectric

surfaces on self-sustainment voltages. It is known from experiment that the presence of a
dielectric facilitates the breakdown (e.g., review [37]), and it is indeed seen in Fig. 7 that
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the self-sustainment voltage decreases as the dielectric approaches the active zone of the
discharge. It would be very interesting to check experimentally the rapid increase of the
self-sustainment and/or breakdown voltage when the dielectric sticks out, predicted by
the modelling and seen in Fig. 7 in the range R ≥ 7.5 mm.

5 Stability of low-current quasi-stationary discharges

The integrated approach to the modelling of quasi-stationary low-current discharges, de-
scribed in Sec. 4.1, offers the possibility of calculating all existing stationary solutions. In
other words, the integrated approach makes it possible to compute all the steady states
of the discharge that are theoretically possible, regardless of their stability and whether
they can be realized in a particular experiment. This is a consequence of the decoupling
of physical and numerical stability, which is characteristic of stationary solvers. An ex-
ample of the usefulness of this feature is the possibility of computation of time-averaged
characteristics of pulsed negative coronas by means of a stationary solver, discussed at
the end of Sec. 4.2.
The stability of the computed steady states may be studied separately. Stability

against small perturbations may be studied by means of solving the eigenvalue problem
resulting from linear stability theory. Note that the eigenvalue problem governing stability
of 2D (axially symmetric or planar) states against 3D perturbations may be formulated
and solved in the 2D geometry, which greatly facilitates the task.
An alternative approach to the investigation of stability is to employ the same code

that was used for calculation of the steady-state solution, with the stationary solver re-
placed by a time-dependent one. A perturbation is applied to the steady-state solution
and the development of the perturbation is followed by means of the time-dependent
solver. This approach does not involve solving an eigenvalue problem and allows studying
stability against both small and finite perturbations. However, one should keep in mind
that numerical stability of time-dependent solvers is not necessarily equivalent to phys-
ical stability: in [5], a number of examples were shown where a time-dependent solver
of COMSOL Multiphysics was able to compute some steady states that are unstable
in the framework of linear stability theory and/or was unable to compute some stable
states. Moreover, time-dependent solvers cannot give any information concerning stabil-
ity against perturbations of symmetries different from the one of the calculation domain
of the solver. For example, 2D time-dependent simulations say nothing about stability
of 2D steady states against 3D perturbations, which are frequently the most dangerous
ones. Consequently, care should be employed in drawing conclusions about the stability
of steady states on the basis of time-dependent simulations.
In [10], the main features of stability of axially symmetric steady states of the Townsend

and glow discharges were investigated by means of solving the eigenvalue problem in the
framework of linear stability theory, considering as an example conditions of microdis-
charges in xenon. Both real and complex eigenvalues have been detected, meaning that
perturbations can vary with time both monotonically and with oscillations. The fun-
damental mode of the axially symmetric glow discharge is stable when the discharge is
operated in the abnormal regime. There is a rather wide window of stability of the axially
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Figure 8. Current-voltage characteristic of a positive point-to-plane corona discharge in a wide
current range. Air, 1 atm, point-to-plane distance 5mm. Triangles: experimental data [28].
Line: modelling. Full circles: the point of maxmium (B) and the turning point (C) of the CVC.
Open circles: states, the stability of which is illustrated in Fig. 9.

symmetric normal discharge, which is characterized by a normal spot at the center of the
cathode. The subnormal discharge is unstable, the Townsend discharge is stable at low
currents.
As another example, let us apply the approach based on the use of time-dependent

solvers to study the stability of steady states of a positive point-to-plane corona discharge
against perturbations of various amplitudes. It is expected that in this specific geometry
the most dangerous perturbations are axially symmetric ones, hence stability may, in
principle, be studied by means of 2D time-dependent modelling.
In Fig. 8, the CVC of a steady-state positive corona under conditions of experiment

[28], computed in a wide current range by means of a stationary solver, is shown. Also
shown are the experimental data from [28], which refer to a more narrow current range and
are the same as the data shown by triangles in Fig. 5(a). The CVC manifests a maximum,
shown by the circle B, followed by a turning point C. Leaving analysis of reasons of such
behavior beyond the scope of this work, let us consider stability of different steady states.
Let U0 be the voltage of the steady state the stability of which we want to investigate.

One can consider different forms of the perturbation imposed over the steady-state solu-
tion. In this work, the initial condition for the time-dependent modelling was obtained
by running the steady-state code for U = U0 + ∆U with a certain value of ∆U . (In
other words, the perturbation was set equal to the difference between the steady-state
solutions for U = U0 + ∆U and U = U0.) The time-dependent code was invoked with
this initial condition and was run with the fixed corona voltage U = U0. If in the course
of temporal evolution the perturbation decays and the discharge relaxes to the steady
state U = U0, then this state is stable against the considered perturbations and for the
voltage-controlled discharge. Otherwise, the state is unstable.
Results of the calculations for ∆U = ±20 V are schematically shown in Fig. 9. Here f

designates a state positioned on the ascending branch of the CVC (branch AB in Fig. 8).
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Figure 9. Stability of a positive point-to-plane corona discharge, same conditions as in Fig. 8.

On being perturbed with ±20 V (states h and i, respectively), the discharge relaxes to the
state f as shown by the arrows, which means stability. The same outcome is obtained in
calculations for other values of ∆U , provided that |∆U | is not too big. The same outcome
is obtained also for other steady states on the ascending branch.
The states after the maximum of the CVC (on the branch BCD in Fig. 8) are unstable.

In some cases, the discharge relaxes to the steady state with the same U on the ascending
branch on the CVC. An example is shown in Fig. 9: on being perturbed with ±20 V
(states j and k, respectively), the discharge relaxes not to the state g but rather to f . In
other cases, no steady state was attained and streamer-like structures appeared to start
forming.
The above fits very well into the conventional pattern of stability of voltage-controlled

discharges against small perturbations: the states on the ascending branch of the CVC
are stable, and the states beyond the maximum of the CVC are unstable.
On the other hand, the states on the ascending branch of the CVC are unstable

against perturbations of a bigger amplitude: simulations for higher values of |∆U | have
shown that stability is lost (and streamer-like structures appear to start forming) as |∆U |
reaches a threshold value, which is between 150 and 200 V for lower U0 and decreases as
U0 increases (e.g., overvoltages of 80 V or more in the state f triggered the formation of
streamer-like structures). In other words, the states on the ascending branch of the CVC
are stable if the perturbations of the corona voltage are within approximately 5% for lower
voltages and about 1% for higher voltages. This may explain why a stable positive corona
discharge is more diffi cult to realize for high corona voltages. In any case, it would be
very interesting to investigate experimentally the effect of voltage stabilization on positive
corona.

6 Summary

The work aims at developing an integrated approach for the computation of low-current
quasi-stationary discharges, from the inception to a non-stationary transition to another
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discharge form, such as a transition from the Townsend discharge to a normal glow dis-
charge or the corona-to-streamer transition. This task involves three steps: (i) modelling
of the ignition of a self-sustaining discharge, (ii) modelling of the quasi-stationary evolu-
tion of the discharge with increasing current, and (iii) the determination of the current
range where the quasi-stationary discharge ceases to exist and the above-mentioned non-
stationary transition begins. Each of these three steps is considered in some detail with
a number of examples, referring mostly to discharges in atmospheric-pressure air.
The ignition of self-sustained gas discharges is governed by a multidimensional boundary-

value eigenvalue problem for a system of stationary partial differential equations (and
possibly also integro-differential equations), formulated in Sec. 3.1. The physical sense
of the problem is that the applied voltage should be such that direct ionization by the
impact of electrons accelerated by the applied electric field and photoionization by pho-
tons generated in the discharge are just suffi cient to compensate for the losses of charged
particles. There are two special cases where the applied electric field may be considered as
uniform and the formulated problem is reduced to one dimension. The first one is the case
of discharge ignition between wide parallel-plate electrodes. The formulated eigenvalue
problem leads to the well-known self-sustainment condition (7) in this case, provided that
similar simplifications are applied. The second special case is the one of self-sustainment
field in the cross section of a plane or cylindrical positive column of a long low-current
discharge. In this case, the formulated problem takes a form similar to the well-known
eigenvalue problem for an ordinary differential equation describing the ambipolar diffu-
sion of charged particles in the cross section of a positive column under the assumption
of quasi-neutrality. The difference is that at the discharge ignition the transversal electric
field is zero, the diffusion is free and not ambipolar, and there is no quasi-neutrality.
In the general case, the formulated eigenvalue problem for the ignition of a self-

sustaining discharge is multidimensional and its numerical solution is not trivial. Three
different methods for its solution are described in Secs. 3.2-3.4: direct solution of the
eigenvalue problem for the self-sustainment voltage, investigation of stability of the no-
discharge solution, and the resonance method. The methods are mathematically equiva-
lent as far as computation of the self-sustainment voltage is concerned, so the question is
which method is easier to implement and use, and which method has wider applicability.
In the authors’experience, the resonance method is the preferred one. The method is
based on solving linear partial differential equations and can be implemented with the use
of standard solvers, including commercial ones. It is robust and fast and has given useful
results in a wide range of conditions and complex geometries.
An important advantage of the resonance method is its physical transparency. In

particular, it allows one to use this method not only for simulations of ignition of self-
sustaining discharges, but also as a module of a more general code for the modelling of
quasi-stationary self-sustained discharges. Such an integrated approach, based on a com-
bination of the resonance method and stationary solvers, is described in Sec. 4.1 and allows
modelling of quasi-stationary low-current discharges in the whole range of their existence
starting from the inception. The use of stationary solvers instead of time-dependent ones
dramatically reduces the computation time, and this reduction is especially large in dis-
charges with strongly varying length scales, such as corona discharges, where a variation
of the mesh element size by orders of magnitude is indispensable.
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The integrated approach to the modelling of quasi-stationary low-current discharges
offers the possibility of calculating all existing stationary solutions, or, in other words, all
steady states of the discharge that are theoretically possible, regardless of their stability
and whether or not they can be observed in a particular experiment. An example of
the usefulness of this feature is the possibility of computation of time-averaged charac-
teristics of pulsed negative coronas by means of a stationary solver, discussed at the end
of Sec. 4.2. Note that time-dependent solvers, while being an adequate tool for studies
of spatiotemporal evolution of individual pulses, cannot be used for direct calculation of
time-averaged characteristics of a pulsed corona.
The stability of the computed steady states may be studied separately. Stability

against small perturbations may be studied by means of solving the eigenvalue problem
resulting from the linear stability theory. An alternative approach to the investigation
of stability is to employ the same code that was used for calculation of the steady-state
solution with the stationary solver replaced by a time-dependent one; a perturbation is
applied to the steady-state solution and the development of the perturbation is followed
by means of the time-dependent solver. An example of application of a time-dependent
solver for investigation of stability of a positive point-to-plane corona discharge against
perturbations of various amplitudes is given in Sec. 5.
A challenging task is to develop, on the basis of the resonance method, an accurate and

fast tool for evaluation of the self-sustainment voltage in conditions of industrial interest.
Such tool would provide a reference point for optimization of hold-off capabilities of high-
voltage switchgear operating in low-frequency fields. It would be a useful supplement to
the technique based on evaluation of the Townsend ionization integral, which is the main
tool used in engineering practice. Another challenging task is to establish a connection
between the self-sustainment and breakdown voltages. Note that in certain conditions
the two voltages coincide; e.g., [9]. It would be very interesting to check experimentally
the rapid increase of the self-sustainment and/or breakdown voltage in cases where the
dielectric protrudes into the plasma, predicted by the modelling and seen in Fig. 7 in
the range R ≥ 7.5 mm. Another interesting unresolved issue is to investigate, through
an experiment supported by a modelling similar to that described in Sec. 5, the effect of
voltage stabilization on the positive corona.
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A Boundary conditions for drift-diffusion equations

The hydrodynamic (drift-diffusion) equations (2) are justified provided that the local
macroscopic length scale L is much larger than the relevant microscopic scale λα. When
α refers to an ion species, λα is represented by the ion mean free path. When α = e, λe
is represented by the electron energy relaxation or maxwellization length. On distances
of the order of λα or smaller from solid surfaces, the hydrodynamic equations lose their
validity. Therefore, a kinetic analysis is indispensable in order to formulate boundary
conditions on solid surfaces for hydrodynamic equations in a rigorous way: a kinetic
equation for the velocity distribution function on distances of the order of λα must be
solved in the first approximation in the small parameter λα/L and the obtained solution
must be asymptotically matched with a solution of the hydrodynamic equations on the
scale L; the procedure of the asymptotic matching will provide the boundary condition
being sought.
Let us denote by the index n the projections of the corresponding vectors onto the local

normal directed from the solid into the plasma. Let us first consider the case where (i)
En, the local normal electric field at the surface, is weak enough so that its work over the
charged particles of species α over the distance λα is much smaller than the characteristic
translational energy of the particles, e |En|λα � kTα; (ii) all particles of species α coming
to the surface from the plasma are absorbed and none are reflected; and (iii) the surface
does not emit the particles of species α. (Here Tα is the species effective temperature
and k is Boltzmann’s constant.) In this case, the distribution function on distances of
the order of λα is of the order of λα/L, i.e., asymptotically small, compared to values
of the distribution function on distances of the order L. Therefore, the above-described
asymptotic matching procedure requires that nα the particle number density governed
by the hydrodynamic equations vanishes at the surface, thus giving the trivial boundary
condition nα = 0 for the hydrodynamic equations. Note that this boundary condition has
exactly the same physical meaning as the standard no-slip boundary condition on solid
surfaces for the Navier-Stokes equations.
If the local electric field is moderate or strong, e |En|λα & kTα, then the asymptotic

structure of the solution on the distances of the order λα is rather complex for both the
electrons [38—40] and the ions [41]; no simple exact solution is possible and therefore there
is no unique way to formulate simple boundary conditions. This explains why the number
of different existing variants of boundary conditions is so large; e.g., [42, 43] and references
therein. On the other hand, the effect of the boundary conditions over the distribution of
particles attracted to the surface (the positive ions in the case En < 0 and the negative
ions and the electrons in the case En > 0) is localized on the length scale kTα/e |En|
in the case of moderate or strong electric fields. This scale is comparable to, or smaller
than, λα and the hydrodynamic (drift-diffusion) equations are anyway inapplicable on this
scale. The effect of the boundary conditions on the distribution of the repelled particles
will be qualitatively correct if the flux of particles emitted by the surface is described
correctly. Hence, the exact form of the boundary conditions is not very important in the
case of moderate or strong electric fields, and this is consistent with what is found in the
modelling practice. Therefore, the use of simple approximations is advisable.
The simplest variants may be summarized as follows. The hydrodynamic transport
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flux of particles of species α in the direction from a solid surface into the plasma may be
represented as

Jαn = rαJα− + J (α)em − Jα−, (A1)

where Jα− is the density of the flux of the particles coming from the plasma to the
surface, rα is the reflection coeffi cient, and J

(α)
em is the density of the flux of the particles

emitted by the surface. Considering rα and J
(α)
em as known, one needs to express the

kinetic quantity Jα− in terms of hydrodynamic parameters in order to obtain an explicit
boundary condition for hydrodynamic equations.
The simplest approximation is to assume that Jα− is proportional to nα the local

number density and the mean speed of chaotic motion, C̄α =
√

8kTα/πmα: Jα− =
ξαnαC̄α, where ξα is a numerical coeffi cient and mα is the species particle mass. Eq. (A1)
assumes the form

Jαn = J (α)em − ξα (1− rα)nαC̄α. (A2)

It is well known that if the velocity distribution of particles of species α is isotropic
and Maxwellian, then the density of particle flux in any direction, in particular, in the
direction to the surface, equals nαC̄α/4, so ξα in Eq. (A2) may be set equal to 1/4. The
condition obtained in this way is equivalent to the so-called Thomson-Loeb formula, which
has been widely used in fluid modelling of gas discharges; e.g., [44] and references therein.
If the number of particles moving from the surface is low, then the velocity distri-

bution near the surface is strongly anisotropic. Approximating this distribution by a
half-Maxwellian function, one obtains ξα = 1/2. Note that the obtained boundary con-
dition in the case of the electrons and re = 0 coincides with the corresponding boundary
condition employed in Plasma module of COMSOL Multiphysics R©.
Another variant of boundary condition may be obtained by representing the veloc-

ity distribution near the surface as a superposition of two distributions, describing the
particles moving to and from the surface. Assuming that each of these distributions is
half-Maxwellian, one can write

rαJα− + J (α)em =
nα+C̄α

2
, J− =

nα−C̄α
2

, (A3)

where nα+ and nα− are the number densities of the particles moving into the plasma and
to the surface, respectively. Solving these equations for nα+ and nα− and substituting
into the expression for the net particle number density, nα = nα+ + nα−, one finds

nα =
(
rαJα− + J (α)em

) 2

C̄α
+ Jα−

2

C̄α
. (A4)

Solving this equation for Jα− and substituting into Eq. (A1), one obtains the boundary
condition

Jαn =
2J

(α)
em

1 + rα
− 1− rα

1 + rα

nαC̄α
2

. (A5)

This condition has been known for a long time, e.g., in the particular case rα = 0 it
coincides with Eq. (38) of [45]; see also recent work [43]. The second term on the rhs of Eq.
(A5) is consistent with the second term on the rhs of Eq. (A2) if one sets ξα = 1/2 (1 + rα).
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However, the first term on the rhs of Eq. (A5) involves the coeffi cient 2/ (1 + ra), which
is absent in Eq. (A2) and which exceeds unity except for ra = 1.
From now on, let us restrict the consideration to the usual situation where the reflection

of the charged particles is insignificant, i.e., rα = 0 for all charged-particle species. Let
us apply each of the above boundary conditions to three limiting cases. The first one is
the case of local equilibrium, where most of the emitted particles return to the surface:
|Jαn| � J

(a)
em . Eq. (A2) with ξα = 1/4 and Eq. (A5) give the correct result nα = 4J

(α)
em /C̄α.

Eq. (A2) with ξα = 1/2 assumes a somewhat different form nα = 2J
(α)
em /C̄α.

The second limiting case is the one where most of the emitted particles are swept away
by the electric field into the bulk of the plasma and only a small number return to the
surface. The drift velocity of the particles in the vicinity of the surface is directed into
the plasma and is much greater than C̄α, so the second term on the rhs of Eqs. (A2) and
(A5) is small. Eq. (A2) assumes the form Jαn = J

(α)
em as it should. On the other hand,

Eq. (A5) gives Jαn = 2J
(a)
em ; a physically unrealistic result.

The third limiting case is the one where the emission flux is much smaller than the
flux of the particles coming from the plasma, i.e., the first term on the rhs of Eqs. (A2)
and (A5) is small. Eq. (A2) with ξα = 1/4 assumes the form Jαn = −nαC̄α/4, while Eq.
(A2) with ξα = 1/2 and Eq. (A5) give Jαn = −nαC̄α/2. The former expression would be
adequate for an isotropic velocity distribution function. However, the distribution near an
absorbing non-emitting surface is strongly anisotropic, and the latter expression appears
to be more appropriate in such cases.
Thus, each of the boundary conditions correctly reproduces two of the limiting cases,

but not the third one. Since the boundary condition (A5) gives an unrealistic result in
the important limiting case where most of the emitted particles are swept away by the
electric field into the plasma, this condition can be hardly recommended. Eq. (A2) with
ξa equal to 1/4 or 1/2 appears to be more physical.
In many cases the ion emission is neglected, i.e., J (α)em for all ion species may be set

equal to zero. Then Eq. (A2) assumes the form

Jαn = −ξαnαC̄α, Jen = J (e)em − ξeneC̄e (A6)

for the ions and the electrons, respectively. The electron emission flux J
(e)
em must be

evaluated with account of all relevant mechanisms, including the electron emission un-
der the effect of charged and excited particles and photons produced in the discharge
(secondary electron emission), photoemission caused by external radiation, thermionic
emission, thermo-field and field electron emission from the cathode surface. It should be
stressed that in the case of weak electric field, where e |En|λα � kTα or, equivalently, the
drift speed is much smaller than C̄α, the first boundary condition in Eq. (A6) is equivalent
to the trivial boundary condition nα = 0 as it should.
The natural choice is to set ξa = 1/2 in the first equation Eq. (A6). ξe in the sec-

ond equation may also be set equal to 1/2 except at hot surfaces in high-pressure (arc)
plasmas, where the dominating electron emission mechanism is thermionic emission and
a significant part of the emitted electrons return to the surface, hence the value ξe = 1/4
may be more appropriate. The boundary conditions (A6) with ξa = ξe = 1/2 were used
in most of the simulations described in this work.
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For computational reasons, it may be convenient to replace the boundary condition Eq.
(A6) for the positive ions at the cathode and negative ions and the electrons at the anode
by the condition of zero normal derivative of nα, which amounts to neglecting the diffusion
flux of the attracted particles to the electrode in comparison with the drift flux. This
eliminates diffi culties with the computation of the distribution of the attracted particles
on the length scale kTα/e |En|, where the solution given by the hydrodynamic equations
is non-physical anyway. This simplification was employed in most of the simulations
described in this work.
As mentioned above, the effect of the precise form of boundary conditions in the

modelling is not strong. As an example, one can refer to the parallel-plate discharge,
considered in Sec. 3.5: the discharge initiation voltage, computed numerically using the
boundary conditions Eq. (A6) with ξi = ξe = 1/2, differs from the value that follows from
Eq. (13), which was obtained without account of diffusion with the boundary conditions
Jen = −γJin at the cathode and ni = 0 at the anode, by mere 1.2%. (The index i here
refers to the positive ions.) As another example, one can mention that the change of
the boundary conditions for the negative ions at the cathode and for the positive ions at
the anode from the condition (A6) with ξα = 1/2 to nα = 0 produced little effect in the
modelling of corona discharges reported in [28].

B Plasmachemical processes and transport coeffi cients
for modelling of low-current discharges in high-
pressure air

The model of plasmachemical processes and transport coeffi cients of low-current dis-
charges in dry air at pressures of the order of atmospheric and higher, used in this work,
was obtained by modifying, as described in this section, the ’minimal’model [12]. Note
that the ’minimal’model was validated in [12] by comparing the computed inception volt-
age of corona discharges with several sets of experimental data on positive and negative
glow coronas between concentric cylinders, over a wide range of pressures and diameters
of the cylinders, and on positive coronas in the rod-to-plane configuration. It should be
stressed that modifications described in this section do not affect the inception voltage,
which was the parameter computed in [12]. The modified model was validated in [28]
by comparing the computed steady-state corona parameters with time-averaged measure-
ments in DC corona discharges in point-plane gaps in ambient air over a wide range of
currents of both polarities and various gap lengths.
The modified model takes into account the following charged species: the electrons, an

effective species of positive ions, which will be designated A+ in this work instead ofM+ as
in [12], and the negative ions O−

2 , O−, and O−
3 . The ions generated in air by the electron

impact ionization are N+
2 and O

+
2 . Ions O+

2 are generated also by the photoionization,
which is produced by UV radiation emitted by N2 molecules excited by electron impact.
The N+2 ions in air at pressures of about 1 atm and higher are rapidly converted into O+

2 .
One channel of such conversion is the fast charge transfer reaction N+2 + O2 → O+

2 + N2.
Another channel comprises a three-body conversion process of N+

2 and N2 molecules into
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the N+
4 ions, followed by the charge transfer from N+4 to O2. Therefore, the positive ions

in the ionization zone are represented mostly by O+
2 .

If the reduced electric field E/N is suffi ciently low and the effective ion temperature
is not appreciably higher than the neutral gas temperature T (which is typically of the
order of 300 K), then the O+

2 ions may be converted into complex ions; e.g., [46]. In the
case of humid air, the formation of cluster ions containing several H2O molecules is also
possible.
Consider, as a characteristic example, complex ions O+

4 , which are created mostly in
the reaction O+

2 + 2O2 → O+
4 + O2 and destroyed in the reverse reaction. Using the rate

constants [47], one obtains

z = 1.78× 10−5
nO2
N0

(
TO+4

300 K

)4(
300 K

TO+2

)3.2
exp

5030 K

TO+4
, (B1)

where z = nO+4 /nO
+
2
, nα and Tα are the number density and the effective temperature of

species α, and N0 = 2.45 × 1025 m−3 is the standard gas number density (the number
density corresponding to the pressure of 1 atm and the gas temperature of 300 K).
Assuming the value of 2.3 × 10−4 m2 V−1 s−1 for the reduced mobility (the mobility

scaled to the standard number density) of ions O+
4 in air [46], one obtains the following

estimate from the Wannier formula (C1): TO+4 = T + 0.037(E/N)2 Td−2 K. Assuming
for the reduced mobility of the O+2 ions in air the value of 2.8 × 10−4 m2 V−1 s−1, which
corresponds to the reduced mobility given in Table IIb (p. 68) of compilation [48] for the
reduced field of 100 Td, one obtains TO+2 = T + 0.054(E/N)2 Td−2 K.
It follows from equation (B1) that, for atmospheric pressure and T = 300 K, z > 1

for E/N . 51 Td and z < 1 for higher reduced fields; in particular, z ≈ 0.0063 for
E/N = 100 Td , which is an approximate value of the critical reduced field in air. This
example confirms that the main positive ion species in the active zone of corona and
corona-like discharges in air are the O+

2 ions, with a typical value of the reduced mobility
of 2.8 × 10−4 m2 V−1 s−1. Dominating positive ions in the drift zone are complex and,
in the case of humid air, cluster ions (except in the region adjacent to the active zone
where E/N approaches 100 Td) with typical reduced mobilities in the range (2.0− 2.5)×
10−4 m2 V−1 s−1 [46].
The dominating process in the active zone is electron multiplication, which is not

directly affected by the presence of positive ions. Hence, values of the mobility of positive
ions in the drift zone are the relevant ones. In this model, the reduced mobility of an
effective positive ion species is set equal to 2.2 ×10−4 m2 V−1 s−1. Similarly, the reduced
mobility of the ions O−

2 is also set equal to 2.2 ×10−4 m2 V−1 s−1, reflecting the possible
formation in the drift zone of complex and, in the case of humid air, cluster ions [46, 49].
The O− ions are present mostly in the active zone, at high reduced electric fields,

since in the drift zone most of them are destroyed by detachment, charge transfer to the
oxygen molecules, and conversion into ozone ions. According to [48], the reduced mobility
of O− varies between approximately 3.7× 10−4 m2 V−1 s−1 and 5.2× 10−4 m2 V−1 s−1 over
the reduced field range up to 100 Td (there are no data for higher fields). According to
[50], the reduced mobility of O− varies between approximately 3.3× 10−4 m2 V−1 s−1 and
4.9×10−4 m2 V−1 s−1 over the reduced field range up to 120 Td. In principle, variations of
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reduced mobilities with the reduced field can be readily introduced into numerical models.
Since, however, a constant value is used for the mobility of O−

2 (and complex/cluster ions),
and given that the above variations are not huge, a constant value of 5.2 cm2 V−1 s−1 is
chosen for the reduced mobility of O− in order to be consistent. Note that this value
corresponds to the value given in Table IIf (p. 81) of [48] for the reduced field of 100 Td.
The O−

3 ions are present mostly in the drift zone, at low reduced fields. According
to [48], the reduced mobility of O−

3 varies between approximately 2.7 × 10−4 m2 V−1 s−1

and 3.4 × 10−4 m2 V−1 s−1 over the reduced field range up to 100 Td, and between ap-
proximately 3.5× 10−4 m2 V−1 s−1 and 3.3× 10−4 m2 V−1 s−1 over the reduced field range
between 100 Td and 200 Td. According to [50], the reduced mobility of O−

3 varies between
2.5×10−4 m2 V−1 s−1 and 3.1×10−4 m2 V−1 s−1 over the reduced field range up to 100 Td,
and between 3.1× 10−4 m2 V−1 s−1 and 2.9× 10−4 m2 V−1 s−1 over the reduced field range
between 100 Td and 240 Td. In order to be consistent, we have chosen for the reduced
mobility of O−

3 ions a constant value of 2.7 × 10−4 m2 V−1 s−1, which corresponds to the
value shown in figure 2 of [50] for the reduced field of 60 Td.
The diffusion coeffi cients of all ion species are related to the mobilities through Ein-

stein’s relation with the corresponding effective ion temperatures evaluated by means of
the Wannier formula, Eq. (C1) of Appendix C. We remind that both Einstein’s relation
and the Wannier formula are accurate in the case of ions with a constant mobility. The
mobility of the electrons was taken from [51] and the longitudinal and transversal diffu-
sion coeffi cients of the electrons were evaluated with the use of the online version of the
Bolsig+ solver [52] and the cross sections [53].
The kinetic scheme and relevant kinetic data used in this model are summarized in

Table 1. Reactions 1-4 and 6-8 are the same that were considered in [12]. In [12], collisional
detachment from O−

2 , reaction 5, was written, following [54], in the form O−
2 + M →

e + O2 + M, where M is any of the molecules N2 and O2. However, the contribution of
the process O−

2 + N2 is small, therefore the collisional detachment from O−
2 is written in

this model with account of collisions only with O2. The approximations of rate constants
of reactions 5-8 were taken from Table 2 of [54]. (The rate constant of the collisional
detachment from O−

2 was multiplied by the factor of 5, in agreement with the above.) It
should be stressed that these approximations are valid for variable gas temperature T , in
contrast to the approximations given in Appendix of [54] and used in [12], which are valid
only for T = 300 K.
Note that, although numerical results reported in this paper refer to the constant

gas temperature T = 300 K, the applicability of the modified model for variable T is an
improvement that will be exploited in subsequent work. It is expected that the modified
model is applicable under conditions where the degree of dissociation of oxygen molecules
is suffi ciently low and oxygen atoms do not significantly affect the balance of charged
particles (in particular, the rate of destruction of negative ions). At air pressures of the
order of 1 atm, this corresponds to gas temperatures of the order of 1000 K and lower.
Another modification to the kinetic scheme [12] is an account of recombination. Again,

this modification is not very relevant to the results reported in this paper, however it will
be useful for subsequent work. It should be stressed that due to the lack of suffi cient
experimental information, the account of recombination cannot be introduced in an accu-
rate way and should be considered rather as an order-of-magnitude estimate. The main
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Number Reaction Evaluation of reaction rate Reference
1 e + M→ 2e + A+ Same as in [12] [12]
2 e + O2 → O− + O Same as in [12] [12]
3 e + O2 + M→ O−

2 + M a) η3
N2 = 1.6× 10−47 (E/N)−1.1 m5 [51]

4 M + hν → e + A+ b) Eqs. (4)-(6) [11]

5 O−
2 + O2 → e + 2O2

c) 6.1× 10−17 exp
[
− 9050
T+0.305(E/N)2

]
m3 s−1 see text

6 O− + N2 → e + N2O
c) 1.16× 10−18 exp

[
− 882
T+0.436(E/N)2

]
m3 s−1 [54]

7 O− + O2 → O + O−
2

c) 6.9× 10−17 exp
[
− 16200
T+0.436(E/N)2

]
m3 s−1 [54]

8 O− + O2 + M→ O−
3 + M c) 1.3× 10−42 exp

[
−T+0.436(E/N)2

1860

]
m6 s−1 [54]

9 A+ + B−→ products d) Eq. (B2)
10 A+ + e→ products d) Eq. (B3)

Table 1. Kinetic scheme and relevant kinetic data. a)Townsend coeffi cient. b) reaction rate.
c)reaction rate constant. T in K, E/N in Td. d)recombination coeffi cient. A+: the effective
positive ion species. B−: any of the negative ions O−, O−2 , O

−
3 . M: any of the molecules N2 and

O2.

mechanism of ion-ion recombination in air, reaction 9, at pressures of the order of 1 bar
and higher is the ion-ion recombination with participation of neutral molecule(s), with
the recombination coeffi cient in the range (2− 2.5)×10−12 m3 s−1 [55]. The rate constant
of the binary ion-ion recombination is typically of the order of 10−13 m3 s−1 (e.g., [47, 56])
and the contribution of this mechanism is small. At pressures of the order of 1 atm and
higher, the coeffi cient of ion-ion recombination with participation of neutral molecule(s)
may be estimated by means of the expression [57]

β−1ii = (βi3N)−1 + β−1iL , (B2)

where βi3 is the three-body recombination rate constant and βiL is the Langevin recombi-
nation coeffi cient. This expression has to be separately evaluated for each pair of positive
(A+) and negative (O−, O−

2 , O−
3 ) ions. The Langevin recombination coeffi cient is related

to the mobilities of the recombining positive and negative ions, µα and µβ, by the for-
mula ε0βiL = e

(
µα + µβ

)
. The value of the three-body recombination rate constant for

T = 300 K and low reduced electric field is assumed equal to 1.5 × 10−37 m6 s−1 for all
three negative ion species; this value ensures a reasonably good agreement of the recom-
bination coeffi cients for O−

2 and O−
3 , given by equation (B2), with the experimental data

shown in figures 6 and 7 of [55] on the recombination coeffi cient in air for a wide range of
pressures. The temperature dependence of the three-body recombination rate constant
varies from T−5/2 (or T−3 for ions in parent gases [58]) at low pressures to T−3/2 at pres-
sures of around 1 atm [55]. Thus, one can set βi3 = 1.5 × 10−37 (300 K/Tαβ)3/2 m6 s−1,
where Tαβ is the effective reduced temperature of species α and β defined in Appendix C.
Electron-ion recombination, reaction 10, can occur via dissociative recombination of

molecular ions, the recombination with participation of neutral molecules, and three-body
recombination with the third body being the electron. The most effective dissociative
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electron-ion recombination process in air is the dissociative recombination of molecular
ions O+

2 and O+
4 . The rate constants of recombination of these ions are βe2 = 2 ×

10−13 (300 K/Te)
0.7 m3 s−1 [59] and βe4 = 4× 10−12 (300 K/Te)

0.5 m3 s−1 [60], respectively
(here Te is the electron temperature, which in this work was evaluated in terms of the
electron mean energy with the use of the online version of the Bolsig+ solver [52] and
the cross sections [53]). The total rate of electron-ion recombination, accounting for
contributions of both these ion species, is βe2nenO+2 + βe4nenO+4 and is represented in the
considered model as βeinenA+, where nA+ has the meaning of the sum nO+2 +nO+4 and βei
may be termed the electron-ion recombination coeffi cient. One finds

βei =
1

1 + z
βe2 +

z

1 + z
βe4, (B3)

where z is given by equation (B1). Note that the second term on the rhs of equation (B3),
which describes the contribution of O+

4 to the total recombination rate, can be appreciable
even in cases where z is much lower than unity, since the recombination rate constant for
this ion is much higher than that for O+

2 . (Note that the latter is a typical situation: rate
constants of dissociative recombination for complex and cluster ions are by an order of
magnitude higher than for diatomic ions.)
The coeffi cient of electron-ion recombination with participation of neutral molecules

may be estimated by means of a formula similar to equation (B2). The Langevin electron-
ion recombination coeffi cient may be estimated in terms of the mobility µe of electrons,
βeL = (e/ε0)µe. Since the electron mobility is high (by two orders of magnitude higher
than the ion mobility), the Langevin electron-ion recombination is negligible up to the
gas pressures of about 100 atm. The three-body electron-ion recombination with the
third body being a gas molecule has been studied in several gases, including CO2 and
H2O. There are no data available on the three-body recombination of oxygen ions with
electrons. In the experiment [61] on recombination of N+

4 in nitrogen at Te = T , the
three-body process has not been observed up to the gas pressure of about 2 atm. It is also
known (for CO2) that the recombination coeffi cient for the three-body process decreases
with increase of Te much faster than that of the two-body process [62]. On the basis of this
information, one can expect that the role of three-body electron-ion recombination with
the third body being a gas molecule would not be very appreciable for air pressures up
to several tens of atm, although this point requires future study. Thus, the electron-ion
recombination with participation of neutral molecules will be neglected.
The rate constant of the three-body electron-ion recombination with a third body

being the electron may be estimated as 1.4×10−31 (Te/300 K)−4.5 m6 s−1 [63]. This process
comes into play at high electron densities, typically those exceeding 1024 m−3, and may
be accounted for by adding the corresponding term to the expression (B3) if appropriate.

C Effective reduced temperature of a pair of ion species
in high electric fields

Let us consider the effective temperature Tα of an ion species α, which is defined by
the equation 1

2
mα(vα − vdα)2 = 3

2
kTα and characterizes the mean kinetic energy of the
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chaotic motion of the ions. Here vα, mα, and vdα are the particle velocity, particle mass,
and average (drift) velocity of species α. This temperature may be evaluated by means
of the Wannier formula in the form

3

2
kTα =

3

2
kT +

1

2
Mv2dα, (C1)

e.g., Eq. (6-2-13b) on p. 276 of [64]. Here M is the particle mass of the neutral gas. In
the case of air, M is interpreted as a weighted average of N2 and O2 particle masses. It
is natural to use the effective temperature Tα while evaluating Einstein’s relation for the
species α.
Let us consider the effective reduced temperature Tαβ of species α and β, which char-

acterizes the mean kinetic energy of relative motion of particles of species α and β and
is defined by the equation 1

2
mαβ(vα − vβ)2 = 3

2
kTαβ, where mαβ = mαmβ/ (mα +mβ) is

the reduced mass of the species. It can be shown that

3

2
kTαβ =

3

2
k
mαTβ +mβTα
mα +mβ

+
1

2
mαβ (vdα − vdβ)2 . (C2)

Note that the third factor in the first term on the rhs of equation (C2) is the so-called
reduced temperature of the species α and β, so the physical meaning of this equation is
clear.
Note also that equation (C2) is consistent with the well-known fact that the mean

kinetic energy of relative motion of ions and neutrals is characterized by the effective ion
temperature: setting in (C2) vdβ = 0, mβ = M , Tβ = T , one obtains Tαβ = Tα as it
should be.
Strictly speaking, the use of the effective reduced temperature Tαβ for the evaluation of

rate constants is justified in the case of binary ion-ion reactions. However, in the absence
of better options it is natural to use these temperatures also in the case of three-body
reactions, where the third body is a neutral particle, in the same way as the effective ion
temperature is used for evaluation of rate constants of three-body ion-molecular reactions
with the third body being a neutral particle. Note that in the particular case of ion-ion
recombination reactions, the factor (vdα − vdβ)2 in (C2) may be replaced by (vdα + vdβ)2.
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