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Multiple steady-state solutions existing in the theory of glow discharges are computed. The 
simulations are 2D and performed in the framework of the simplest self-consistent model of glow 
discharge, which accounts for a single ion species and employs the drift-diffusion approximation. 
Solutions describing up to nine different modes were found. One mode is 1D and represents in 
essence the well-known solution of von Engel and Steenbeck. The other eight modes are axially 
symmetric, exist in limited ranges of the discharge current, and are associated with different 
patterns of current spots on the cathode. Account of diffusion losses affects the solutions strongly. 
The solutions that exist in limited current ranges describe patterns which may be viewed as axially 
symmetric analogues of the 3D patterns observed in DC glow microdischarges in xenon. 

 
1. Introduction 

It is well known that current transfer to cathodes 
of DC glow discharges can occur in the abnormal 
mode or in the mode with a normal spot. Recently, 
also modes with multiple spots have been observed; 
e.g., [1,2] and references therein. These facts, jointly 
with considerations stemming in bifurcation analysis 
and the theory of nonlinear dissipative structures, 
have led to a hypothesis [3-5] that a self-consistent 
theoretical model of a near-cathode region in a DC 
glow discharge must admit multiple steady-state 
solutions describing different modes of current 
transfer. However, these solutions have not been 
revealed by the numerical modelling [6-12]. 

For the first time, these solutions have been 
reported in [13]. In [13], diffusion losses were not 
accounted for and only two 2D modes were found. 
In the present work, additional data on the multiple 
solutions without diffusion losses are given and the 
effect of the diffusion losses is investigated. 

 
2. The model 

Let us consider a mathematical model of a DC 
glow discharge comprising equations of 
conservation of a single ion species and the 
electrons, transport equations for the ions and the 
electrons written in the so-called drift-diffusion 
approximation, and the Poisson equation. The 
processes considered for charged particle production 
and decay are electron impact ionization and 
dissociative recombination. The temperatures of the 
charged particles are assumed given and uniform 
throughout the discharge. 

Boundary conditions at the cathode and anode 
are written in the conventional form: diffusion 
fluxes of the attracted particles are neglected as 
compared to drift; electrons are emitted by the 
cathode through secondary emission; density of ions 

vanishes at the anode; electrostatic potentials of 
both electrodes are given. One boundary condition 
at the wall of the discharge vessel is the 
conventional condition of zero electric current 
density. Two boundary conditions are used 
alternatively for the densities of charged particles at 
the wall, corresponding to the cases i) where 
diffusion losses to the wall are neglected, and ii) 
where diffusion losses are taken into account. 

Results reported in this work refer to a discharge 
in xenon under the pressure of 30 Torr. The 
interelectrode gap is h = 0.5 mm and the radius of 
the discharge tube R is between 1.5 mm or 0.5 mm . 
The mobility of Xe2

+ ions in Xe was evaluated by 

means of the formula µi = 2.1×1021 m-1 V-1 s-1 /nn 

(here nn is the density of the neutral gas). The 
mobility of the electrons was evaluated by the 
formula  

µe = 17 Torr m-2 V-1 s-1 /p, where p is the pressure of 

the plasma; Townsend's ionization coefficient α was 
evaluated by equation (4.6) of [14]. The diffusion 
coefficients were evaluated by means of Einstein's 
law and the temperatures of the heavy particles and 
electrons were set equal to, respectively, Ti = 300 K  
and Te = 1 eV. The coefficient of dissociative 
recombination of molecular ions Xe2

+ was set equal 

to 2×10-13 m3 s-1. The effective secondary emission 

coefficient was set equal to 0.03. Cylindrical 
coordinates (r, φ, z) with the origin at the center of 
the cathode and the z-axis coinciding with the axis 
of the vessel were employed. 

Numerical results reported in this work have 
been calculated with the use of the commercial 
finite element software COMSOL Multiphysics. 
The 1D mode, which exists at all discharge currents 
and is termed fundamental, may be found as a 
matter of routine. However, other solutions are not 
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easy to find: one needs to know in advance what 
these solutions are like and where they should be 
sought. In this work, this information was obtained 
by means of finding bifurcation points where 2D 
solutions branch off from the fundamental mode, 
similarly to what has been done in [5].  

 
3. Multiple solutions without diffusion losses 

Results reported in this section refer to a 
discharge tube of the radius R = 1.5 mm. Multiple 
solutions describing nine different modes were 
detected in this case, a 1D mode and eight 2D 
modes. As an example, the current-voltage 
characteristics (CVCs) of the fundamental mode and 
the first, fifth and eighth 2D modes are shown in 
figure 1. Here <j>  is the average value of the axial 
component of the electric current density evaluated 
over the (circular) cross section of the discharge 
vessel. It should be noted that the CVC of the eighth 
2D spot mode coincides, to the graphical accuracy, 
with the CVC of the fundamental mode. Each of the 
2D modes exists in a limited range of the discharge 
current and its CVC represents a closed curve. 

For each of the 2D modes, there are two states in 
which densities of charged particles and electric 
potential vary with z but not with r. These states are 
marked by circles in figure 1 and subsequent 
figures. One of these two states is close to the point 
of minimum of the CVC of the fundamental mode 
and is designated ai (i = 1,2,..,8), the other is 
 

 
Figure 1: CVCs. R = 1.5 mm, diffusion losses neglected. 
Solid: fundamental mode; dashed: first 2D mode; dashed-
dotted: fifth 2D mode; circles: bifurcation points. 

designated bi and located at lower currents. These 
states belong not only to the 2D mode being 
considered, but also to the fundamental mode. In 
other words, the solutions describing the 2D mode 
and the fundamental mode coincide at these states. 
This phenomenon is well known in mathematical 
physics and called bifurcation, or branching, of 
solutions, and states where it occurs are called 
bifurcation points. 

The (two) bifurcation points positioned on each 
2D mode divide this mode into two branches. 
Schematics in figure 1 illustrate current density 
distributions over the cathode surface corresponding 
to each branch. One of the two branches of each 2D 
mode is associated with a pattern comprising a spot 
at the centre of the cathode and the other with a 
pattern without a central spot. 

The complexity of the patterns associated with 
the 2D modes increases with i or, equivalently, with 
a decrease of the range of existence of the 
corresponding mode. 

For the central-spot branch of the first 2D mode a 
plateau on the CVC can be seen in figure 1. The 
maximum of current density over the cathode 
surface for states belonging to this plateau does not 
change much. Both the plateau of the CVC and the 
approximate constancy of current density inside the 
spot are characteristic features of the effect of 
normal current density. Hence, the section of the 
central-spot branch of the first 2D mode 
corresponding to the plateau of the CVC may be 
identified with the normal discharge. 

The effect of normal current density is 
manifested also by the other branch of the first 2D 
mode and by the second and subsequent 2D modes, 
however with increasing i it becomes less 
pronounced and occurs in a narrower range of the 
discharge currents, eventually disappearing. 

The patterns with multiple spots may be viewed 
as axially symmetric analogues of 3D patterns 
observed in DC glow microdischarges, see e.g. 
[1,2]. Thus, the present modelling supports the 
hypothesis [3-5] that patterns with multiple spots 
may be described in the framework of basic 
mechanisms of glow discharge, so there is no need 
to introduce special mechanisms to this end. 

 
4. The effect of variation of the radius 

Calculations for a discharge tube of the radius 
R = 0.5 mm revealed only two 2D modes; see figure 
2. Also shown in this figure is the fundamental 
mode (which is the same that the one found for R = 
1.5 mm). Average current densities corresponding to 
the bifurcation points positioned on the first and 
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second 2D modes are 

<j(a1)>  = 311 A m-², <j(b1)>  = 7.7 A m-², 

<j(a2)>  = 265 A m-², and   <j(b2)>  = 26 A m-². Note 

that the similar values for R = 1.5 mm are  

<j(a1)>  = 329 A m-², <j(b1)>  = 1.3 A m-², 

<j(a2)>  = 325 A m-², and <j(b2)>  = 3.4 A m-². One 

can conclude that a decrease of R causes a shift of 
the two bifurcation points belonging to each 2D 
mode in the directions towards each other. The 
range of existence of each of the 2D modes also 
shrinks with a decrease of R. 

Calculations for intermediate R have shown that 
the third to eighth 2D modes disappear with 
decreasing R one by one, and the disappearance 
occurs through shrinking of their existence ranges.    
A more or less pronounced effect of normal current 
density is present at R = 0.5 mm only on the first 2D 
mode, as evidenced by the CVCs shown in figure 2. 

 
5. Solutions with diffusion losses 

When diffusion losses to the wall are taken into 
account, the fundamental mode is no longer 1D but 
rather becomes 2D. Furthermore, the non-
fundamental 2D modes do not bifurcate from the 
fundamental mode. Under these circumstances it is 
not possible to rely on bifurcation analysis in order 
to obtain information on the range of existence of 
non-fundamental 2D modes or what these modes are 
like. 
The procedure of finding these modes was as 
follows. Starting from a state belonging to a 2D 
mode without diffusion losses, the diffusion losses 
are gradually introduced for a fixed value of the 
input parameter (the discharge voltage or current). 
When diffusion losses have been fully introduced, 
the next step was to vary the input parameter in 
order to obtain the 2D mode in the whole range of 
its existence.  
Three 2D modes have been found for 
R = 1.5 mm. One of them exists at all current values, 
i.e., is fundamental, the other two modes exist only 
in limited current ranges. The CVCs of the three 
modes are shown in figure 3. The 2D modes are all 
disconnected from each other, although CVCs 
intersect at some values of the discharge current. 
The CVCs of the non-fundamental 2D modes 
represent closed curves and each is constituted by 
two branches separated by two turning points. Also 
shown in figure 3 is the fundamental mode for 
R = 0.5 mm. No other 2D modes have been found 
for this value of R. 
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 Figure 2: CVCs. R = 0.5 mm, diffusion losses neglected. 
(a) The first 2D mode and fundamental mode; (b) the 
second 2D mode and the fundamental mode. 
 

The fundamental solution describes the abnormal 
discharge, the normal discharge, the subnormal 
discharge, and the Townsend discharge, and is 
similar to the solutions computed in, e.g. [6-11]. The 
first and second non-fundamental 2D modes are 
associated with patterns with an interior ring spot 
and, respectively, a spot at the centre and an interior 
ring spot. Only the fundamental mode was found at 
R = 0.5 mm. 

 
Concluding remarks 

Multiple steady-state solutions have been found 
in the framework of the simplest self-consistent 
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Figure 3: CVCs. Diffusion losses taken into account. 
Solid, two dot-dashed: fundamental mode. Dashed-dotted: 
the first non-fundamental 2D mode. Dashed: the second 
non-fundamental 2D mode. 

 
model of DC glow discharge. When losses of the 
ions and the electrons due to diffusion to the wall 
are neglected, solutions describing nine different 
modes were detected in the case of a discharge tube 
of the radius R = 1.5 mm. One mode is 1D, is 
fundamental (i.e., exists at all values of the 
discharge current), and represents in essence the 
well-known solution of von Engel and Steenbeck. 
The other eight modes are 2D (axially symmetric) 
and exist in limited ranges of the discharge currents. 
Each 2D mode is constituted by two branches, one 
associated with a pattern comprising a spot at the 
centre of the cathode and the other with a pattern 
without a central spot. The branch with a spot at the 
centre of the cathode exhibits a well pronounced 
effect of normal current density. The number of 
existing 2D modes decreases with a decrease of the 
radius R of the discharge tube; there are only two 
modes at R = 0.5 mm. 

When diffusion losses are taken into account, the 
number of multiple solutions is significantly 
reduced: only three 2D modes exist at R = 1.5 mm. 
One is the fundamental mode, comprising the 
Townsend, subnormal, normal and abnormal 
discharges. The non-fundamental modes describe a 
pattern with an interior ring spot and a pattern with a 
spot at the centre and an interior ring spot. 

The patterns associated with multiple axially 
symmetric modes found in this work may be viewed 
as axially symmetric analogues of patterns observed 
in DC glow microdischarges, e.g. [1,2]. 

Future work should include finding multiple 3D 
solutions, an investigation of stability of different 

steady-state solutions, and eventually an 
introduction of more complex effects, such as the 
presence of multiple ion and/or neutral species, 
variations of the electron and heavy particle 
temperatures, nonlocality of the electron transport 
with the aim of explaining why patterns with 
multiple spots have been observed in xenon 
microdischarges and not in other discharges. 
Finding of multiple 3D solutions may be facilitated 
by bifurcation analysis in a similar way as it was 
done in this work while finding multiple 2D 
solutions. 
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