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Stability of 1D and 2D (axially symmetric) DC glow discharge against small perturbations is 
investigated in the framework of the linear stability theory with the use of software COMSOL 
Multiphysics. Conditions of current-controlled microdischarges in xenon are treated as an 
example. Variations of the increments of perturbations with discharge current are investigated for 
the 1D glow discharge and different modes of axially symmetric glow discharge. Both real and 
complex increments have been detected, meaning that perturbations can vary with time both 
monotonically and with oscillations. In general, results given by the linear stability theory confirm 
intuitive concepts developed in the literature and conform to the experiment. On the other hand, 
the theory provides suggestions for further experimental and theoretical work. 
 

 
1. Introduction 

Multiple solutions in the theory of DC glow 
discharges have been computed recently [1,2]. Some 
solutions describe modes with a normal spot and the 
others describe modes with patterns of multiple 
spots similar to those observed in DC glow 
microdischarges in xenon; e.g., [3]. In this abstract, 
stability of 1D and 2D fundamental modes, i.e., the 
ones which exist in a wide current range, is studied 
in the framework of the linear stability theory. 
Results on stability of non-fundamental modes are 
skipped here because of lack of space but will be 
presented at the conference. Software COMSOL 
Multiphysics is employed. Note that this software 
includes, in addition to powerful steady-state 
solvers, also an eigenvalue solver, which makes it fit 
for the task. 
 
2. The model 
2.1. System of equations and boundary conditions 

In [4] self-organized patterns on DC glow 
cathodes have been studied by means of a model 
which accounts for atomic and molecular ions, non-
equilibrium population of excited states, several 
ionization channels, and comprises an energy 
equation for the electrons. It was found that the 
effect of chemistry and non-locality of electron 
kinetic and transport coefficients does not cause 
qualitative changes in self-organization. Therefore, 
in this abstract, a simple model is used which takes 
into account a single ion species (molecular ions) 
and employs the local-field approximation.  

The system of equations comprises equations of 
conservation of a single ion species and the 
electrons, transport equations for the ions and the 
electrons written in the drift-diffusion local-field 
approximation, and the Poisson equation: 
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Here ni, ne, Ji, Je, Di, De, μi, and μe are number 
densities, densities of transport fluxes, diffusion 
coefficients, and mobilities of the ions and electrons, 
respectively;  is Townsend's ionization coefficient; 
 is the coefficient of dissociative recombination;  
is scalar potential; E = || is the electric field 
strength; 0 is the permittivity of free space; e is the 
elementary charge; and t is time. 

Numerical results refer to a discharge in xenon 
under the pressure of 30 Torr. The transport and 
kinetics coefficients are the same that in [1]; in 
particular, constant values are assumed for the 
transport and dissociative recombination 
coefficients. 

The discharge occurs in a vessel in the form of a 
right circular cylinder of a radius R = 1.5 mm and of 
a height h = 0.5 mm. Let us introduce cylindrical 
coordinates (r,,z) with the origin at the center of the 
cathode and the z-axis coinciding with the axis of the 
vessel. Boundary conditions at the cathode and 
anode are written in the conventional form. One 
boundary condition at the (dielectric) lateral wall of 
the discharge vessel is zero of the radial component 
of the total electric current density. The boundary 
conditions of the charged particles at the wall are 
written under the assumption that all ions and 
electrons coming to the wall are absorbed. 

The discharge is assumed to be current-
controlled.  Therefore,  the  discharge  voltage  U  is  

Topic 4 



30th ICPIG, August 28th – September 2nd 2011, Belfast, Northern Ireland, UK 

 
 

found in the course of simulations. 
The above stationary problem admits an axially 

symmetric (2D) solution, F = F(r,z) (here F is any 
of the quantities ni, ne, and ) which exists at all 
discharge currents: the fundamental mode. Under 
certain conditions, the problem admits also other 2D 
and 3D solutions, which exist in a limited current 
range. In this abstract, results on stability of the 2D 
fundamental mode are reported. 

It is of interest to consider also the case where all 
charged particles coming to the wall are reflected 
rather then absorbed. The fundamental mode of the 
discharge becomes 1D: all the parameters vary only 
in the axial direction, i.e., F = F(z). This is the 1D 
form of glow discharge to which the classical von 
Engel and Steenbeck theory refers. The pattern of 
stability of this mode is the simplest and the easiest 
to understand. Besides, investigation of its stability 
includes a determination of points of bifurcation of 
steady-state modes, which are important for 
understanding the pattern of multiple steady-state 
modes [5] and calculation of these modes [1]. For 
this reason, stability of the 1D glow discharge is 
investigated as well. 
  
2.2. Eigenvalue problem describing stability 

Perturbations of 2D (1D) stationary states can be 
2D or 3D (or 1D). In the framework of the 
conventional formalism of the linear stability theory, 
a solution to the above-described problem is sought 
as sum of a steady-state solution and small 
perturbations with exponential time dependence. 
Taking into account that the 3D perturbations are 
harmonic with respect to the azimuthal angle , one 
can write 

      ...,cos,,,,, 1,10,0,    mzrnezrntzrn ei
t

eiei
 (5) 

    ...,cos,),(,,, 10    mzrezrtzr t      (6) 

  ....10  UeUtU t                       (7) 

Here the first term on the rhs (right-hand side) of 
each expansion represents a solution describing the 
stationary state stability of which is being studied; 
the second term represents a perturbation of this 
state; λ is the increment of growth of the 
perturbation; and m = 0, 1, 2, …. If m = 0, the 
perturbation being considered is 2D (or 1D). If m = 
1, 2, …, the perturbation is 3D with period in  
equal to 2π/m. 

Substituting expansions (5)-(7) into equations of 
the above-problem, linearizing, and equating linear 
terms, one obtains a linear eigenvalue problem, λ 
being the eigenvalue. By means of solving this 
problem for a given m, one will determine a set of 
eigenvalues λ (spectrum) associated with this m. By 

means of repeating this procedure for each m and 
joining the obtained spectra, one will find the whole 
spectrum of the stationary state being treated. If real 
parts of all eigenvalues are non-positive, the state is 
stable; if at least one eigenvalue has a positive real 
part, the state is unstable. 

Numerical results have been performed with 
commercial software COMSOL Multiphysics, 
version 4.0a. The procedure is not quite 
straightforward and will be presented in detail at the 
conference. 
 
3. Stability of the 1D fundamental glow discharge 

The current-voltage characteristic (CVC) of the 
1D glow discharge is shown in figure 1. A large 
number of different perturbation modes have been 
found, which are real or complex conjugate. 
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Figure 1 - CVC of the 1D glow discharge. Solid: stable 
sections. Dashed: unstable sections. Circles: points of 
change of stability against a mode of real perturbations or 
against two complex conjugate modes. Triangle: point of 
minimum of the CVC. 

 
It is convenient to introduce "quantum numbers" 

in order to identify different modes of perturbations. 
Dependence of perturbations of 1D stationary states 

on r and  is given by Jm( '
msj  r/R)cos(m),  where 

Jm(x) is the Bessel function of the first kind and '
msj  

is the sth zero of the derivative of the Bessel 
function of order m, m = 0, 1, 2, ..., s = 1, 2, 3, .... So 
m and s are natural candidates. One more "quantum 
number" is needed in order to distinguish between 
perturbation modes associated with the same pair (m, 
s) but with different dependences on z. Let us 
number such perturbation modes in the order of 
decrease of Re λ; in the case of a pair of complex 
conjugate perturbations, the one associated with an 
increment with a positive imaginary part is counted 
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first. Let us designate this number by l and use as the 
missing "quantum number". 

Switching of perturbations of different modes 
between decay and growth is illustrated by figure 2. 
At j ≥ jmin, where jmin is the current density at the 
minimum point of the CVC, real parts of the 
increments of all perturbation modes are negative, so 
the discharge is stable. As j decreases, real parts of 
the increments increase and eventually one of them 
turns positive. This happens at j slightly below jmin, 

the corresponding state is designated )1(
1b , and the 

perturbation that becomes growing is one with m = s 
= 1. As j decreases further, real parts of the 
increments of other perturbations turn positive. This 

happens in the order of increase of the value of '
msj . 

Altogether, 117 perturbation modes become growing 
between the point of minimum of the CVC and the 

state )1(
117b , with 8 of these modes being 2D 
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Figure 2 - Increments of growing perturbations of the 1D 
glow discharge. Solid: real part of the increment. Dashed: 
modulus of the imaginary part. Dotted: increments 
unknown. Crosses: values of j where stability changes 
against a mode of real perturbations or against two 
complex conjugate modes. a) 1D perturbations. b) Axially 
symmetric and 3D perturbations. 
and 109 being 3D. 

As j decreases further, real parts of the 
increments of all growing perturbation modes return 
to negative values. This happens in the order of 

decrease of '
msj . The discharge has regained 

stability at state )2(
1b . However, the stability is lost 

once again at state a(1), where the real part of the 
increments of two conjugate perturbation modes 
with (m = 0, s = 1), which are 1D, becomes positive. 
As current decreases further, no more stability 
changes occur and the discharge remains unstable. 

 
4. Stability of the 2D fundamental glow discharge 

The CVC of the 2D fundamental mode is shown 
in figure 3. 
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Figure 3 - CVC of the axially symmetric glow discharge. 
Solid: stable sections. Dashed: unstable sections. Circles: 
points of change of stability against a mode of real 
perturbations or against two complex conjugate modes. 

 
Dependence of perturbations of axially 

symmetric stationary states on  is given by 
cos(m). In order to distinguish between 
perturbation modes associated with the same m but 
with different dependences on r and z, we once 
again number such perturbation modes in the order 
of decrease of Re λ and designate this number by q. 

Switching of perturbations of different modes 
between decay and growth is illustrated by figure 4. 
At j ≥ 469 Am-2, real parts of the increments of all 
perturbation modes are negative and the discharge is 
stable. As j decreases, real parts of the increments 
increase and eventually Re λ of two complex 
conjugate perturbation modes with m = 1 becomes 

positive. This happens at j  469Am-2; state )1(
1b . 

As j decreases further, real parts of the increments 
of other perturbation modes turn positive. This 
happens in the order of increase of the value of m. 
The last perturbation mode to becomes growing has 
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m = 7 (at state )1(
7b ). As j decreases further, real 

parts of the increments of all growing perturbation 
modes return to negative values. 
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Figure 4 - Increments of growing perturbations of the 
axially symmetric glow discharge. Solid: real part of the 
increment. Dashed: modulus of the imaginary part. 
Crosses: values of j where stability changes against a 
mode of real perturbations or against two complex 
conjugate modes. a) Axially symmetric perturbations. b), 
c) 3D perturbations with m = 1. 

 

After having regained stability at state )2(
1b  (j  

330 Am-2), the discharge remains stable until state 
)3(

1b  (j  182 Am-2) where two modes with m = 1 

become growing. One of these perturbations returns 

to being decaying at j  141 Am-2 and the other at 

j   0.66 Am-2 (state )4(
1b ). Since there are two 

growing perturbation modes with m = 0 in the 
current range 36 mAm-2 < j < 2.8 Am-2, i.e., 
between states a(1) and a(4), the discharge become 
stable only for currents below 36 mAm-2. 
 
5. Conclusions 

A pattern of stability of 1D and 2D glow 
discharges was established. Both real and complex 
increments of perturbations have been detected, 
meaning that perturbations can vary with time both 
monotonically and with oscillations. The 1D glow 
discharge is stable in the current range where the 
CVC is rising and unstable where the CVC is 
falling. The 1D Townsend discharge is unstable at 
low current. The 2D fundamental mode is stable 
when it operates in the abnormal regime and in a 
certain current range in the normal regime. The 
subnormal discharge is unstable. Loss of the charged 
particles at the lateral wall stabilizes Townsend 
discharge at low currents. In general, results given 
by the linear stability theory confirm intuitive 
concepts developed in the literature and conform to 
the experiment. On the other hand, the theory 
provides suggestions for further experimental and 
theoretical work. 
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