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A simple, computationally efficient, and accurate method of evaluation of field to thermo-field to 
thermionic electron emission current density in the framework of the Murphy-Good formalism is 
devised with the use of Padé approximants. It is shown that electron emission from cathodes of 
high-pressure arcs is adequately described by the Richardson-Schottky formula even for extremely 
high plasma pressures typical for some arc lamps. Emission from cathodes of vacuum arcs is of 
thermo-field nature and can be rather accurately described by the Hantzsche fit formula. Since no 
analytical formulas are uniformly valid for field to thermo-field to thermionic electron emission, a 
numerical evaluation of the Murphy-Good formalism is inevitable if a model is to be valid in the 
full range of conditions of plasma-cathode interaction in vacuum arcs. The approach proposed in 
this work may be the method of choice to this end. 

 
1. Introduction 

Modern multidimensional numerical models of 
plasma-cathode interaction in vacuum arcs require 
field to thermo-field to thermionic electron emission 
current density be evaluated at each iteration at each 
time step at each point of the cathode surface. 
Therefore, a fast and accurate evaluation method is 
of crucial importance. A theoretical description of 
field to thermo-field to thermionic electron emission 
from metals in the quasi-classical approximation has 
been developed by Murphy and Good long ago [1]. 
However, a question of fast and accurate evaluation 
in the framework of the formalism [1] is not quite 
trivial and has been considered in many works, e.g., 
[2-4]. It has become clear is that an accurate method 
uniformly valid from field to thermo-field to 
thermionic emission cannot be fully analytical. 

In this work, a simple, fast, and accurate method 
of evaluation of field to thermo-field to thermionic 
electron emission current density in the framework 
of the formalism [1] is devised with the use of Padé 
approximants. Unsurprisingly, the method is not 
fully analytical and still involves a numerical 
evaluation of one integral, which is done by means 
of the Romberg integration. Calculations for 
conditions of cathodes of high-pressure and vacuum 
arc discharges are performed and regimes are 
identified where simpler descriptions are justified.  

  
2. Evaluating the electron emission current in the 
framework of the Murphy-Good formalism 

In the framework of the theory [1], the density of 
electron emission current is given by 
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where Tw is the temperature of the surface of the 
emitter, Ew is the electric field at the surface,  is the 
work function, W has the meaning of the part of the 
electron energy for the motion normal to the surface 
measured from zero for a free electron outside the 
metal, N is the Fermi-Dirac distribution for the free 
electrons in the metal,  

 
and D is the tunnelling probability, 
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and v(y) is a function expressed in terms of the 
complete elliptic integrals K(m) and E(m). 

Combining the above equations, one can write  
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where b= /kTw and Aem=4πmek
2e/h3. 

 
3. Integral I1  

The function I1(c) may be expressed in terms of 
dilogarithm (Spence's integral for n=2) and the latter 
for c≥0 may be evaluated with the use of the 
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Chebyshev series. However, a faster and sufficiently 
accurate way is to use a Padé rational approximation 
(Padé approximant) over the variable x=ec. The 
simplest rational approximation which agrees with 
the two-term asymptotic expansions of the function 
I1(x) for x→0 and x→∞ reads 

I1 
c1  c2x − 1

1  c3x − 1  c2x2 − 1
 

 
with 
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The relative error of this approximant does not 
exceed 4.6×10-5 for all c≥0.  

The functional relation 
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will be used for c<0.  
 
4. Integral I2  

This integral cannot be expressed in terms of 
conventional special functions and is governed by 
three parameters (a, g, b), so it is hardly possible to 
devise an accurate uniformly valid approximate 
formula. Therefore, the integral needs to be 
evaluated numerically. 

A straightforward numerical evaluation of the 
function v(y) requires an evaluation of complete 
elliptic integrals. The latter can be performed 
numerically, e.g., [5]. However, simple analytical 
formulas for v(y) are desirable in order for numerical 
evaluation of the integral I2 to be fast. Simple and 
accurate formulas can be derived by means of Padé 
approximants with the use of results [4] elucidating 
the character of the dependence v(y) for small y. The 
approximant suitable in the interval 0≤y≤1 reads 
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with w=y2 and  
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The relative error of this approximant does not 
exceed 3.7×10-4 over the whole range 0≤y≤1, which 
is significantly smaller than errors of all previously 
reported simple formulas; an unsurprising result 
reflecting the power of Padé approximants. Besides, 
this formula ensures correct asymptotic behavior of 
the function v(y) for both y→0 and y→1, the latter 
being important for deriving a smooth 
approximation on the whole interval 0≤y≤21/2 which 
is relevant for evaluation of thermo-field emission. 

The approximant suitable in the interval 1≤y≤21/2 
reads 

vy  − 3
25/2
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with coefficients being expressed in terms of the 
functions K(m) and E(m) (these expressions are 
skipped for brevity) and having numerical values 
c6=0.51470654, c7=0.20232890, and c8=-
0.01341007. The relative error of this approximant 
does not exceed 4.8×10-6 over the whole interval 
1≤y≤21/2, which again is significantly smaller than 
that of previously reported simple formulas. 

Under conditions of practical interest, one or 
more parameters governing the integrand in I2 are 
large and the integrand represents a multi-scale 
function. Therefore, an efficient numerical 
evaluation of integral I2 must include an adaptive 
choice of the numerical grid. A suitable method is 
Romberg integration [5]. First, let us write 
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In order to avoid overflow which may occur in 
evaluation of the exponential functions for small y, it 
is advisable to rewrite the last expressions as 

r1  ln 1  exp b − g
y − b − g

y , r2 
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In cases where exp(g/y-b) is very small, the use 

of the first of these expressions causes accumulation 
of errors and the Romberg integration (or, more 
precisely, Richardson's deferred approach to the 
limit) may fail. Then the quantity r1 should be 
evaluated by means of a series in powers of exp(g/y-
b) which is obtained by expanding the logarithm. 

In this framework, the Romberg integration in its 
standard form [5] and the above-described method 
on the whole are fast and robust and can be used in 
all conditions where the Murphy-Good theory is 
applicable.  

 
5. Electron emission from cathodes of arc 
discharges 

Let us now identify particular regimes of 
operation of cathodes of vacuum and high-pressure 
arc discharges where simpler descriptions are 
justified. Namely, let us consider cases where the 
size of non-uniformities of the cathode surface 
exceeds significantly the thickness of the near-
cathode plasma layer and, as far as cathodes of 
vacuum arcs are concerned, the cathode is hot 
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enough so that supply of cathode vapor into the 
discharge gap is dominated by vaporization and not 
explosive emission. Then the electric field at the 
cathode surface may be estimated by means of a 1D 
model of current transfer through the near-cathode 
plasma layer, e.g., [6,7]. 

Values of electric field at the cathode surface 
shown in Fig. 1 have been computed for a vacuum 
arc with a Cu cathode; for Hg and Xe high-pressure 
arcs for three pressure values (1, 15, and 200bar); 
and for a 1bar Ar arc. Note that a 1bar Ar arc 
represents a standard example of an atmospheric arc, 
while Hg and Xe arcs are of interest in connection 
with projection and car headlight arc lamps, where 
pressures of the order of 100 or 200bar are rather a 
rule than an exception. The near-cathode voltage 
drop in all the calculations reported in this work was 
20V and the work function was 4.5eV. Note that the 
monotonically increasing dependence of Ew on Tw 
seen in Fig. 1 for the case of vacuum arc is a 
consequence of a decrease of the thickness of the 
space-charge sheath caused by an increase of the 
vapor pressure and, consequently, the local charged 
particle density. The switching of the dependence of 
Ew(Tw) from increasing to decreasing in the case of 
high-pressure arcs occurs as the near-cathode plasma 
approaches full ionization.  
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Fig. 1. Electric field at the surface of an arc cathode 
for different plasmas-producing gases. 

 
Analyzing the data shown in Fig. 1 in view of 

those shown in Fig. 2, one concludes that the 
Richardson-Schottky formula represents a good 
approximation for the high-pressure arcs in cases 
p=1bar and p=15bar but may represent a poor 
approximation for the high-pressure arcs in the case 
p=200bar and for the vacuum arc. Therefore, the 

applicability of the Richardson-Schottky formula for 
the high-pressure arcs with p=200bar and for the 
vacuum arcs requires a more detailed investigation. 
In this connection, the most important parameters of 
the near-cathode plasma layer, which are densities of 
energy flux and electric current from the plasma to 
the cathode, evaluated using the Murphy-Good 
formalism and the Richardson-Schottky formula are 
shown in Fig. 3 for Hg and Xe arcs in the case 
p=200bar. One can see that the Richardson-Schottky 
formula represents a reasonably good 
approximation. The situation is different as far as the 
vacuum arcs are concerned, which is seen from Fig. 
4: the usage of the Richardson-Schottky formula 
introduces a significant error. 

 

Fig. 2. Electron emission current density given by the 
Richardson-Schottky formula normalized by the Murphy-
Good value. 

 
Line 3 in Fig. 4 represents the density of energy 

flux computed using the Murphy-Good formalism 
with both integrals I1 and I2 being evaluated by 
means of numerical integration over the variable W 
with a fixed step equal to 10-20J and the lower limit 
of integration equal to -4 . There is a significant 
difference between this line and the line 1; an 
indication of importance of the use of the integration 
variable 1/W and of an adaptive choice of the 
numerical grid. 

Line 4 in Fig. 4 represents the density of energy 
flux computed with the use of the Hanzsche fit 
formula for electron emission from a metal with the 
work function of 4.5eV [2] with corrections given in 
[8]. One can see that this formula provides a good 
accuracy. 
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Fig. 3. Densities of energy flux and electric current 
from the high-pressure plasma to the cathode evaluated 
using the Murphy-Good formalism (solid) and the 
Richardson-Schottky formula (dashed). 

 

Fig. 4. Density of energy flux from the vacuum arc 
plasma to the Cu cathode evaluated using different 
descriptions of electron emission.1: the Murphy-Good 
formalism. 2: the Richardson-Schottky formula. 3: the 
Murphy-Good formalism with integration variable 
being the electron energy. 4: the Hantzsche formula. 

 
5. Conclusions 

A simple, accurate, and computationally efficient 
method of evaluation of field to thermo-field to 
thermionic electron emission current density in the 
framework of the Murphy-Good formalism is 
devised with the use of Padé approximants. 

Unsurprisingly, the method is not fully analytical 
and still involves a numerical evaluation of one 
integral. Since the integrand represents a multi-scale 
function, an efficient numerical evaluation of the 
integral must include an adaptive choice of the 
numerical grid. A suitable method is Romberg 
integration. 

Calculations for conditions of cathodes of high-
pressure and vacuum arc discharges are performed 
for cases where the size of non-uniformities of the 
cathode surface exceeds significantly the thickness 
of the near-cathode plasma layer and, as far as 
cathodes of vacuum arcs are concerned, the cathode 
is hot enough so that supply of cathode vapor into 
the discharge gap is dominated by vaporization and 
not explosive emission. It is found that electron 
emission from cathodes of high-pressure arcs is of 
thermionic nature and adequately described by the 
Richardson-Schottky formula even for extremely 
high plasma pressures (up to 200bar) typical for 
automotive and projection arc lamps. Emission from 
cathodes of vacuum arcs is of thermo-field nature 
and can be rather accurately described by the 
Hantzsche fit formula. Unfortunately, no analytical 
formulas are uniformly valid for field to thermo-
field to thermionic electron emission, therefore a 
numerical evaluation of the Murphy-Good 
formalism is inevitable if a model is to be uniformly 
valid in the full range of conditions of plasma-
cathode interaction in vacuum arcs. The approach 
proposed in this work may be the method of choice 
to this end. 
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