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Simulating AC current transfer through near-electrode layers in
very-high pressure arcs by means of COMSOL Multiphysics
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Numerical simulation of AC current transfer through near-electrode layers in very-high pres-
sure arcs in mercury and xenon is reported. The simulation is performed by means of a
numerical model in which the whole of a near-electrode layer is simulated in the framework
of a single set of equations without simplifying assumptions such as thermal equilibrium,
ionization equilibrium, and quasi-neutrality. The system of equations includes equations of
conservation of each species (the atoms, ions and electrons), transport equations for each
species, equation of energy of the heavy species (the atoms and ions), equation of energy of
the electrons, and the Poisson equation. The system of equations is solved numerically in
1D by means of a non-stationary solver of COMSOL Multiphysics.

1. Introduction
The plasma-electrode interaction in high-pressure

arc discharges is dominated by non-LTE effects (e.g.,
[1] and references therein), which include a violation
of thermal equilibrium, i.e., a divergence between
the electron and heavy-particle temperatures; a vi-
olation of ionization equilibrium, i.e., a deviation
of the charged-particle density from that predicted
by the Saha equation; and a violation of quasi-
neutrality, i.e., a divergence between the electron
and ion number densities. A straightforward nu-
merical calculation of near-electrode plasma layers
with account of all these effects represents a diffi cult
task. Therefore, in many works either some of these
effects are discarded, or the near-electrode layer is
a priori divided into a number of sub-layers, such
as a layer of thermal non-equilibrium, an ioniza-
tion layer, a near-electrode space-charge sheath etc,
with each sub-layer being described by a separate
set of equations and solutions in adjacent sub-layers
being matched in some way or other at a bound-
ary between the sub-layers (e.g., [1] and references
therein).

Papers in which the whole of a near-electrode
layer is simulated in the framework of a single set of
equations with account of all the above-mentioned
non-LTE effects have started to appear only re-
cently [2, 3]. Such unified modelling approach does
not rely on intuitive considerations, which are in-
evitable in models based on sub-layers and differ
from one model to another, and is useful for de-
veloping commonly accepted physical understand-
ing and/or simulation methods. This approach is
independent of polarity and allows one to model
both near-cathode and near-anode layers by means

of the same code by merely changing sign of the
current density; a feature important from the me-
thodical point of view and essential for modelling
near-electrode layers of AC arcs.

The unified modeling of near-cathode and near-
anode layers was reported in [2] and [3], respec-
tively. This work is concerned with modeling of
near-electrode layers of AC arcs.

2. The model and numerics
The numerical model used in this work repre-

sents a non-stationary version of the model [2, 3].
The model takes into account the neutral atoms,
ions, and electrons; the atoms and ions have the
same temperature Th which is in general different
from the electron temperature Te. The system of
governing equations is as follows.

Equations of conservation of species read

∂nα
∂t

+∇ · Jα = ωα, α = i, e, a, (1)

Here Jα is the number density of transport flux of
the species α (Jα = nαvα, where nα and vα are
the number density and mean velocity of particles
of the species α), ωα is the net rate of production of
particles of the species α in volume reactions, and
indexes i, e, a refer to ions, electrons, and atoms,
respectively. The dominating ionization mechanism
in atomic plasmas is ionization in collisions with
electrons and the dominating recombination mech-
anism is recombination with an electron acting as a
third body, then

ωi = ωe = −ωa = kinane − krnin2e, (2)

where ki and kr are the ionization and recombina-
tion rate constants.



The transport equations for species are written
in the form of hydrodynamic Stefan-Maxwell equa-
tions (e.g., [4, 5] and references therein), which are
applicable at any ionization degree of the plasma.

−∇pα + nαeZαE+
ρα
ρ
[∇p− e (ni − ne)E]

−
∑
β

nαnβkTαβCαβ
nDαβ

(vα − vβ)−RT
α = 0, (3)

where

mαβ =
mαmβ

mα +mβ
, Tαβ =

mαTβ +mβTα
mα +mβ

. (4)

Here α, β = i, e, a; mα, Tα, ρα = nαmα, and pα =
nαkTα are the particle mass, temperature, mass
density, and partial pressure of the species α; n =∑

β nβ, ρ =
∑

β ρβ, and p =
∑

β pβ are the to-
tal number and mass densities and pressure of the
plasma; Dαβ are binary diffusion coeffi cients eval-
uated in the first approximation in expansion in
the Sonine polynomials in the method of Chapman—
Enskog and Cαβ are coeffi cients of the order unity
introducing corrections arising in higher approxima-
tions (note that Dβα = Dαβ, Cβα = Cαβ); mαβ and
Tαβ are the reduced mass and temperature; terms
RT
α account for thermal diffusion; E is the electric

field.
The thermal diffusion forces RT

α are given by
formulas

RT
α = C(h)α nαk∇Th+C(e)α nαk∇Te, RT

e = C(e)e nek∇Te
(5)

for heavy-particle species (α = i, a) and for elec-
trons, respectively. (Note that the transport equa-
tion for electrons does not contain a term with ∇Th
since the corresponding force is negligibly small due
to the smallness of the electron-to-ion mass ratio
[4]). The thermal diffusion coeffi cients C(h)α and
C
(e)
α satisfy equalities

naC
(h)
a + niC

(h)
i = 0,

∑
α

nαC
(e)
α = 0. (6)

Equations (3) are dependent (summation of these
equations over α gives a trivial result), therefore
any one of them may be dropped. We will drop the
equation for atoms.

The electron and heavy-particle energy equa-
tions can be written as [6]
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+∇ ·

(
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− w(e)e , (7)
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where he and hhp are the densities of heat fluxes
transported by the electrons and heavy particles,
respectively. The terms with the factor 5/2 on the
left-hand side of each of these equations account for
the enthalpy transport by the diffusion fluxes. The
first term on the right-hand side accounts for Joule
heating of the electron or, respectively, ion species.
The second term accounts for the energy exchange
between the electrons and the heavy particles due to
elastic collisions. The third term on the right-hand
side of equation (7) accounts for losses of electron
energy due to inelastic collisions and may be written
as [6]

w(e)e = Aiωe + wrad, (9)

where Ai is the energy of ionization of an atom and
wrad designates losses of electron energy through
radiation or, in other words, the net emission coef-
ficient (e.g., [7, 8]) integrated over the solid angle.

Densities of electron and heavy-particle heat fluxes
represent a combination of heat fluxes caused by
heat conduction and by the effect inverse to the
thermal diffusion, and are written as [4]

he = −κe∇Te
+kTene

[
A
(e)
i (ve − vi) +A(e)a (ve − va)

]
, (10)

hhp = −κhp∇Th
+kTh

[
niA

(h)
i (vi − va) + naA(h)a (va − vi)

]
, (11)

where κe and κhp are thermal conductivities of the

electron and heavy-particle gases and A
(e)
i , A

(e)
a ,

A
(h)
i , and A(h)a are kinetic coeffi cients.
The set of equations includes also the Poisson

equation, which is written as

ε0∇ ·E = e (ni − ne) . (12)

The modelling results reported in this work re-
fer to the case of parallel-plane current transfer to
a planar electrode through a planar near-electrode
region. The pressure is considered constant and is
considered as an input parameter.

The boundary conditions at the electrode sur-
face are the same as in [2] and take into account



the emission of electrons by the surface. Since the
current density is constant in the planar geometry,
all parameters of the plasma (except the electrosta-
tic potential) are constant at large distances from
the electrode, where the plasma is in the state of
local thermodynamic equilibrium, or LTE and its
energy balance is dominated by radiation. One can
say that the plasma far from the electrode is not dis-
turbed by the electrode. The upper boundary of the
calculation domain is positioned far enough from
the electrode surface in the undisturbed plasma and
the conditions at this boundary are zero derivatives.

The above-stated problem is solved by means of
a non-stationary solver of COMSOL Multiphysics.
The plasma-producing gas is Xe or Hg. The trans-
port and kinetic coeffi cients are the same as those
in [2, 3]. Note that test calculations performed by
means of the same code with a constant (time in-
dependent) current density by means of a station-
ary solver gave results exactly coinciding with those
obtained for near-cathode and near-anode layers of
DC arcs by a stationary Fortran code used in [2,3].

3. Results and discussion
As an example, let us consider results of cal-

culations for a very-high pressure (100 bar) Xe arc
with the current density j being a square-wave func-
tion of time t with an amplitude of 105Am−2 and
frequency, f , of 104Hz (the rise/fall time of j was
chosen as f/10). In the simulations it was assumed
that the electrodes were made of pure tungsten and
that the temperature of the electrode surface was
Tw = 3000K. The results of the simulations are
the following. In figure 1 the potential difference
between the electrode and the upper boundary of
the calculation domain is represented as a function
of time together with the current density. In this
and in the following figures positive values of j rep-
resent calculations for the cathodic phase and neg-
ative values represent the anodic phase. Is it worth
mentioning that because of the high frequency of
the square-wave current density in each phase the
potential difference does not have enough time to
stabilize to the stationary value.

In figures 2 and 3 is shown respectively the den-
sity and the temperature of the electrons at the elec-
trode surface.
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Figure 1. Potential difference between the
electrode and the upper boundary of the

calculation domain as a function of time. Solid
lines: Potential difference between the electrode
and the upper boundary of the calculation domain.
Dashed lines: The applied current density j.
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Figure 2. Density of the electrons at the electrode
surface as a function of time. Solid lines: Density of
electrons at the electrode surface. Dashed lines: The

applied current density j.
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Figure 3. Temperature of the electrons at the electrode
surface as a function of time. Solid lines: Temperature
of electrons at the electrode surface. Dashed lines: The

applied current density j.
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