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Abstract
A model of a near-cathode region in high-pressure arc discharges is developed in the
framework of the hydrodynamic (diffusion) approximation. Governing equations are solved
numerically in 1D without any further simplifications, in particular, without explicitly dividing
the near-cathode region into a space-charge sheath and a quasi-neutral plasma. Results of
numerical simulation are reported for a very high-pressure mercury arc and an
atmospheric-pressure argon arc. Physical mechanisms dominating different sections of the
near-cathode region are identified. It is shown that the near-cathode space-charge sheath is of
primary importance under conditions of practical interest. Physical bases of simplified models
of the near-cathode region in high-pressure arc discharges are analysed. A comparison of
results given by the present model with those given by a simplified model has revealed
qualitative agreement; the agreement is not only qualitative but also quantitative in the case of
an atmospheric-pressure argon plasma at moderate values of the near-cathode voltage drop.
The modelling data are compared with results of spectroscopic measurements of the electron
temperature and density in the near-cathode region.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It has long been realized that an adequate description of
the near-cathode plasma layer is the key element of the
theory of plasma–cathode interaction in high-pressure arc
discharges. There are many works treating near-cathode
plasma layers (see, e.g., [1–15]; a review and further references
can be found in [16]). However, there is still no universally
accepted understanding of the physics involved. Neither
are there universally employed simulation models. In part,
the unsatisfactory state of the theory is due to diversity of the
physical mechanisms involved and complexity of the overall
physical picture. On the other hand, near-cathode layers of
high-pressure arc discharges represent an extremely difficult
object for experimental investigation due to their very small
dimensions and extreme conditions typical of arc discharges.
Therefore, the experiment cannot provide much guidance for
the theory.

Published papers deal with different aspects of near-
cathode plasma layers and employ different approaches;
however, all of them have one point in common: the near-
cathode plasma layer is a priori divided into a number of

sub-layers with different properties (such as a layer of thermal
non-equilibrium, an ionization layer, a near-cathode space-
charge sheath, etc), each sub-layer is described by its own
set of equations and solutions in adjacent sub-layers are
matched in some way or other at a boundary between the
sub-layers. The division of the near-cathode plasma layer
into sub-layers with different properties reflects the fact that
different physical mechanisms in many cases, although not
always, come into play on different length scales. However,
the usage of this division as a basis for a calculation model
inevitably involves quite a bit of intuitive consideration and
therefore is not a proper way to develop commonly accepted
physical understanding and/or simulation models. In fact,
there is no universally accepted point of view even on such
a basic question as to what sub-layers are the most important
and must be necessarily included in a model: while most of
the workers believe that a near-cathode space-charge sheath
is of primary importance, there are models, also recent ones,
in which a space-charge sheath is discarded; see [16] and
references therein.

An alternative to the above-described approach relying on
an a priori introduction of different sub-layers is to model
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the whole of a near-cathode region in the framework of a
single set of equations without simplifying assumptions such
as thermal equilibrium, ionization (Saha) equilibrium and
quasi-neutrality. After such modelling has been completed,
one will be able to identify physical mechanisms dominating
different regions and thus pin down appropriate sub-layers.
(In other words, the introduction of sub-layers, while being
hardly justifiable as a basis of a numerical model, is natural
and legitimate as a tool of analysis of results of calculations
in which the near-cathode plasma layer is treated in a unified
way.) In spite of being highly desirable, unified numerical
modelling of near-cathode plasma layers in high-pressure arc
discharges still has not been reported, the likely reason being
the considerable computational complexity of the problem.
Note that a two-dimensional modelling of high-pressure
arc plasmas without assumptions of thermal or ionization
equilibrium has been performed in [17, 18]; however, the
assumption of quasi-neutrality is more difficult to relax since
this amounts to solving the Poisson equation in the whole near-
cathode region, including its outer part where the density of
the charged particles is quite high and so is the degree of quasi-
neutrality. On the other hand, in [19] boundary layers of a high-
pressure combustion plasma with an alkali seed were modelled
in the framework of a one-dimensional (1D) approach without
assumptions of thermal or ionization equilibrium or quasi-
neutrality, however only for conditions of low current densities
and, consequently, low ionization degree.

In this work, a unified 1D modelling of near-cathode
plasma layers is performed in the range of (high) current
densities from 106 to 108 A m−2, which are typical for cathodes
of high-pressure arc discharges. Detailed calculation results
are given for an argon arc at atmospheric pressure, which
is a kind of a standard high-pressure arc, and a mercury
arc at the pressure of 100 bar, which is typical for high-
intensity discharge lamps. Dominating physical mechanisms
are elucidated and the validity of assumptions is analysed on
which available simplified models are based.

Distribution functions of the ions and the electrons in the
bulk of a near-cathode region of a high-pressure arc discharge
are close to the Maxwellian ones due to frequent ion–ion, ion–
neutral atom and electron–electron collisions. Therefore, the
bulk of the near-cathode region of a high-pressure arc discharge
can be adequately described by conventional hydrodynamic
(diffusion) equations. The situation is different in a very
thin section of a near-cathode region immediately adjacent
to the cathode surface, where deviations from the Maxwell
distribution can occur. Hence, equations more complex than
conventional hydrodynamic equations may be needed in a
general case in order to uniformly describe the whole of a near-
cathode region. For example, one may need to supplement a
conventional hydrodynamic transport equation for the ions,
which takes into account diffusion and drift of the ions and
momentum exchange between the ion and atom species in
elastic collisions, with terms accounting for ion inertia and
momentum exchange between the ion and atom species due to
ionization and recombination as was done in [2, 5, 10, 13, 15],
or to supplement a set of governing equations with a kinetic
equation for the isotropic part of the electron distribution

function involving both a derivative in the energy space and a
spatial derivative, as it was done in [20] in simulations of a near-
cathode region in a high-pressure combustion plasma with an
alkali seed. However, such complications are hardly advisable
at the very first step. In this work, a unified modelling of near-
cathode plasma layers in arc discharges is performed on the
basis of conventional hydrodynamic equations. This approach
is well justified for arcs in high-intensity discharge lamps and
should also give acceptable accuracy for atmospheric-pressure
argon arcs provided that the near-cathode voltage drop is not
too high.

The outline of the paper is as follows. In section 2
governing equations of the model are given, together with
corresponding boundary conditions. Results of calculation
are given and discussed in section 3. A comparison with
the experiment is discussed in section 4 and conclusions
are summarized in section 5. The paper contains two
appendices, describing evaluation of transport, kinetic and
radiation coefficients and the method of numerical solution.

2. The model

2.1. The system of equations

Let us consider a near-cathode region of an arc discharge in
an atomic gas under high pressure, of the order of atmospheric
or higher. Convective effects in the near-cathode region are
neglected. The plasma comprises neutral atoms, ions and
electrons; the presence of multiply charged ions is neglected as
justified in [6]. The atoms and ions have the same temperature
Th which is in a general case different from the electron
temperature Te.

The system of equations governing spatial distributions
of plasma parameters in the near-cathode region is as follows.
Equations of conservation of species read

∇ · Jα = ωα, α = i, e, a, (1)

Here Jα is the number density of transport flux of the species
α (Jα = nαvα , where nα and vα are the number density and
mean velocity of particles of the species α), ωα is the net rate of
production of particles of the species α in volume reactions and
indices i, e, a refer to ions, electrons and atoms, respectively.
The dominating ionization mechanism in atomic plasmas is
ionization in collisions with electrons and the dominating
recombination mechanism is recombination with an electron
acting as a third body, then

ωi = ωe = −ωa = kinane − krnin
2
e, (2)

where ki and kr are the ionization and recombination rate
constants. Evaluation of these constants and all the other
transport, kinetic and radiation coefficients is described in
appendix A.

Adding equations (1) for the ions and the atoms, one
arrives at the equation of conservation of nuclei

∇ · (Ji + Ja) = 0. (3)
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Subtraction of equation (1) for the electrons from that for the
ions gives

∇ · (Ji − Je) = 0. (4)

Since Ji − Je = j/e, where j is the density of electric current,
equation (4) has the meaning of equation of continuity of
electric current. In the following, equations (3) and (4) will be
used instead of equation (1) for the ions and the atoms.

If the ionization degree of a plasma is low enough,
transport of plasma species may be described by means of
Fick’s law written for the ions and the electrons, the so-called
drift–diffusion approximation (e.g. [21]). Since plasmas in
arc discharges are frequently strongly or even fully ionized,
the use of Fick’s law in this work would be inappropriate and
transport equations taking the multicomponent diffusion into
account must be used instead. Such equations are derived in
the kinetic theory of gases, e.g. [22–26]. When resolved with
respect to diffusion forces, they are called Stefan–Maxwell
equations and may be written as [25]

−∇pα + nαeZαE +
ρα

ρ
[∇p − e(ni − ne)E]

−
∑

β

nαnβkTαβCαβ

nDαβ

(vα − vβ) − RT
α = 0, (5)

where

mαβ = mαmβ

mα + mβ

, Tαβ = mαTβ + mβTα

mα + mβ

. (6)

Here α, β = i, e, a; mα , Tα , ρα = nαmα and pα = nαkTα

are the particle mass, temperature, mass density and partial
pressure of the species α (we recall that Ti = Ta = Th �= Te);
n = ∑

β nβ , ρ = ∑
β ρβ and p = ∑

β pβ are the total number
and mass densities and pressure of the plasma; Dαβ are binary
diffusion coefficients evaluated in the first approximation
in expansion in the Sonine polynomials in the method of
Chapman–Enskog and Cαβ are coefficients of the order unity
introducing corrections arising in higher approximations (note
that Dβα = Dαβ , Cβα = Cαβ); mαβ and Tαβ are the reduced
mass and temperature; terms RT

α account for thermal diffusion;
E is the electric field. Note that equations (5) may be viewed in
a simplified way as equations of conservation of momentum of
species written under the assumption that the inertia forces are
negligible, with the first, second and fourth terms on the left-
hand side of equations (5) having the meaning of, respectively,
the pressure gradient of the speciesα, the force exerted over this
species by the electric field and the resultant force of friction
between this species and the other ones.

The thermal diffusion forces RT
α are given by formulae

RT
α = C(h)

α nαk∇Th + C(e)
α nαk∇Te, RT

e = C(e)
e nek∇Te

(7)

for heavy-particle species (α = i, a) and for electrons,
respectively. (Note that the transport equation for electrons
does not contain a term with ∇Th since the corresponding force
is negligibly small due to the smallness of the electron-to-ion
mass ratio [25].) The thermal diffusion coefficients C(h)

α and
C(e)

α satisfy equalities

naC
(h)
a + niC

(h)

i = 0,
∑

α

nαC(e)
α = 0. (8)

Equations (5) are interdependent (summation of these
equations over α gives a trivial result); therefore any one of
them may be dropped. We will drop the equation for atoms.

The assumption of negligible convection requires that
the force exerted by the electric field over the plasma be
compensated by the plasma pressure gradient:

− ∇p + e(ni − ne)E = 0. (9)

It follows, in particular, that the third term on the left-hand side
of equations (5) vanishes.

The electron and heavy-particle energy equations can be
written as [25]

∇ ·
(

5

2
kTeJe + he

)
= −eJe · E

−3nek
2Te

min
(Te − Th)

(
na

Dea
+

ni

Dei

)
− w(e)

e , (10)

∇ ·
(

5

2
kThJa +

5

2
kThJi + hhp

)

= eJi · E +
3nek

2Te

min
(Te − Th)

(
na

Dea
+

ni

Dei

)
, (11)

where he and hhp are the densities of heat fluxes transported by
the electrons and heavy particles, respectively. The terms with
the factor 5/2 on the left-hand side of each of these equations
account for the enthalpy transport by the diffusion fluxes. The
first term on the right-hand side accounts for Joule heating
of the electron or, respectively, ion species. The second term
accounts for the energy exchange between the electrons and the
heavy particles due to elastic collisions. The third term on the
right-hand side of equation (10) accounts for losses of electron
energy due to inelastic collisions and may be written as [27]

w(e)
e = Aiωe + wrad, (12)

where Ai is the energy of ionization of an atom and wrad

designates losses of electron energy through radiation or,
in other words, the net emission coefficient (e.g. [28, 29])
integrated over the solid angle.

Adding up equations (10) and (11) gives an equation of
conservation of the energy of the plasma as a whole. With the
use of equation (1) with α = e and equation (12), this equation
may be written as

∇ ·
[

5

2
kThJa +

5

2
kThJi +

(
5

2
kTe + Ai

)
Je + he + hhp

]

= E · j − wrad. (13)

Let us multiply equation (4) by (Ai − Af), where Af is the
work function of the cathode material. Adding up the obtained
equation and equation (13), one obtains another form of the
equation of conservation of the plasma energy:

∇ ·
[

5

2
kThJa +

(
5

2
kTh + Ai − Af

)
Ji

+

(
5

2
kTe + Af

)
Je + he + hhp

]
= E · j − wrad. (14)
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Equations (13) and (14) represent useful corollaries of
equations (10) and (11). Vectors in square brackets on
the left-hand sides of equations (13) and (14) represent the
density of flux of plasma energy; the non-uniqueness of this
quantity originates in the dependence of the flux of energy of
a multicomponent reacting mixture on the choice of zeros of
enthalpy of elements.

Densities of electron and heavy-particle heat fluxes
represent a combination of heat fluxes caused by heat
conduction and by the effect inverse to the thermal diffusion
and are written as [25]

he = −κe∇Te

+ kTene[A(e)
i (ve − vi) + A(e)

a (ve − va)], (15)

hhp = −κhp∇Th

+ kTh[niA
(h)

i (vi − va) + naA
(h)
a (va − vi)], (16)

where κe and κhp are thermal conductivities of the electron and
heavy-particle gases and A

(e)
i , A

(e)
a , A

(h)

i and A
(h)
a are kinetic

coefficients.
The set of equations also includes the Poisson equation

ε0∇ · E = e(ni − ne). (17)

Using this equation, one can rewrite equation (9) as

∇p = ε0(∇ · E) E. (18)

The primary aim of this work is to study that section of
the near-cathode region where the energy flux to the cathode
surface is generated. Since the thickness of this section is much
smaller than transversal dimensions of the cathode, the density
of electric current does not change much here and current
transfer across this section of the near-cathode region may
be treated as locally planar. It is natural in such a situation
to consider a 1D planar model describing a parallel-plane
current transfer to a planar cathode through a planar near-
cathode region. On the other hand, one can take a step further
and consider a 1D spherically symmetric model describing
a spherically symmetric current transfer to a hemispherical
cathode through a spherically symmetric near-cathode region.
As far as a thin near-cathode layer is concerned, the spherically
symmetric model will give a solution close to the one given
by the planar model; additionally, the spherically symmetric
model can provide useful information on physics of the
constriction zone, which is an outer part of the near-cathode
region where the density of electric current varies between
values typical for the arc column and considerably higher
values at the cathode surface. In this work, the 1D spherically
symmetric model is employed.

Let us designate by rc the radius of the (hemispherical)
cathode, by x distance from the cathode surface measured
in the radial direction (so that r = rc + x represents the
distance from the centre of the cathode), and by Jα , j , E, etc
radial components of the corresponding vectors. The above
equations are written in the 1D form under the assumption of
spherical symmetry, after which equations (3), (4) and (18)

may be integrated to give

Ji + Ja = 0, (19)

Ji − Je = j

e
= −jc

e

1

B
. (20)

p = p0 + ε0

(
E2 − E2

0

2
− 2

∫ r0−rc

x

E2

rc + x
dx

)
. (21)

Here jc is a constant having the meaning of the density of
electric current coming to the cathode surface from the plasma
(a given parameter), B = (1+x/rc)

2, r = r0 is a reference point
and E0 and p0 are the electric field and the plasma pressure at
this point. Equation (19) is written taking into account the fact
that the nuclei do not accumulate or disappear at the cathode
surface. Note that it is convenient to choose the reference
point far away from the cathode, then the second term on the
right-hand side of equation (21), while being comparable at
high current densities with the first term in the near-cathode
space-charge sheath both for a very high-pressure Hg plasma
and an atmospheric-pressure Ar plasma, is small outside the
sheath, so p0 may be interpreted as the plasma pressure in the
arc chamber. In this work, p0 is treated as a given parameter.

2.2. Boundary conditions

The system of ordinary differential equations to be solved
comprises equation (1) with α = e, equation (5) with α = i, e,
energy equations (10) and (11) (any one of these equations may
be replaced by equation (13) or equation (14)), equations (15),
(16) and (17). These equations are solved in the domain
0 � x � L, where the lower boundary x = 0 corresponds
to the cathode surface and the upper boundary x = L is placed
far enough from the cathode in the constriction zone.

Intuitively, one could expect that altogether eleven
boundary conditions must be specified: boundary conditions
for density of each species and the electron and heavy-particle
temperatures at the cathode surface, similar conditions at
x = L and a condition specifying voltage drop applied to
the plasma domain under consideration. The latter condition
is specified implicitly in terms of the current density at the
cathode surface jc, which is treated as a given parameter.
One boundary condition for particle densities at the cathode
surface has already been introduced and used: nuclei do not
accumulate or disappear there. One more boundary condition
for particle densities is specified in terms of pressure p0, which
is treated as a given parameter. Thus, eight more boundary
conditions must be specified, and this count conforms to the
type of the system of differential equations to be solved, which
comprises eight first-order ordinary differential equations.

Let us restrict the consideration with the case where
the cathode surface absorbs all the electrons coming from
the plasma and reflects none. A boundary condition for the
electron density at the cathode surface is written as (e.g. [30])

jem

e
− neCe

4
= Je, (22)

where Ce = (8kTe/πme)
1/2 is the mean speed of random

motion of the electrons. The left-hand side of this boundary

4



J. Phys. D: Appl. Phys. 41 (2008) 245201 N A Almeida et al

condition represents a difference between the flux of emitted
electrons moving from the cathode surface and the flux of
plasma electrons moving to the cathode surface due to random
motion; the right-hand side represents the net flux of the
electrons evaluated in the hydrodynamic approximation. The
density jem of electron emission current is evaluated by
means of the Richardson or Richardson–Schottky formulas
depending on whether the electric field at the cathode surface
is directed into the plasma or, respectively, to the cathode.

Let us assume that all the ions coming from the plasma
recombine at the cathode surface (and the neutral atoms go
back into the plasma). In principle, the boundary condition
for the ion density at the cathode surface can be written in
a form similar to equation (22) without the first term on the
left-hand side. Ji at the cathode surface is of the order of
Dian

(pl)
i /Li, where n

(pl)
i is a characteristic ion density in the

adjacent plasma and Li is a local length scale of variation
of parameters of the ion species. It follows from the above-
mentioned boundary condition that the ratio of the ion density
at the cathode surface ton

(pl)
i is of the order of the ratio of the ion

mean free path to Li. The latter ratio represents the Knudsen
number. Under conditions of applicability of hydrodynamic
equations, the Knudsen number must be small and terms of the
order of the Knudsen number in hydrodynamic equations are
neglected. One should drop such terms also in the boundary
conditions in order to be consistent. It follows that the proper
boundary condition for the ion density at the cathode surface
is vanishing density:

ni = 0. (23)

This is the well-known hydrodynamic boundary condition on
an absorbing surface, e.g. [31, 32]. A more detailed discussion
and further references can be found elsewhere [33].

The heavy-particle temperature at the cathode surface
equals Tw, the temperature of the surface, which is considered
as a given parameter:

Th = Tw. (24)

The boundary condition for the electron temperature at the
cathode surface is written as

jem

e
2kTw − neCe

4
2kTe = Je

5

2
kTe + he. (25)

The first term on the left-hand side of this boundary condition
accounts for the flux of energy transported by (emitted)
electrons moving from the cathode surface, evaluated under
the conventional approximation of their velocity distribution
by the (half-)Maxwellian function with the cathode surface
temperature Tw, e.g. [3]. (We recall that the average energy
per electron equals 2kTw instead of 3kTw/2, which is what
one could expect intuitively. This is a consequence of the
average value of a product being not equal to the product of
average values of multipliers; see the Internet site [34] for
details.) The second term on the left-hand side of the boundary
condition (25) accounts for the flux of energy transported
by plasma electrons moving to the cathode surface, and the
right-hand side represents the net flux of the electron energy
evaluated in the hydrodynamic approximation.

The upper boundary of the calculation domain, x = L,
is positioned in the constriction zone, where the density of
electric current varies between very high values typical of the
cathode surface and lower values typical of the arc column.
Most models of high-pressure arc discharges are based on
the assumption that the arc plasma is in a state of local
thermodynamic equilibrium (LTE) except in the vicinity of
the electrodes and at the fringes of the arc [29]. As far as the
constriction zone is concerned, this assumption is supported
by estimates [16], which have been performed for a 30 bar
mercury plasma and j = 107 A m−2. Furthermore, the
estimates [16] showed that the energy balance of the plasma
in these conditions is to a first approximation dominated
by radiation, meaning that Joule heating of the plasma is
approximately balanced by losses of plasma energy through
radiation. Therefore, boundary conditions at x = L are
formulated in this work assuming that the plasma at x = L is
in LTE and its energy balance is dominated by radiation. This
assumption will be verified after a solution has been calculated;
see section 3.3.

From the mathematical point of view, the proper way
to introduce the above-described boundary conditions is to
assume that at x = L gradients are negligible so that the
balance of particle numbers, momentum and energy is local.
In other words, parameters of the plasma at x = L are
found by solving (non-differential) equations which follow
from equation (1) with α = e, equation (5) with α = i, e,
equations (13), (11) and (17) when the gradient terms are
dropped:

kina − krnine = 0, (26)

nαeZαE −
∑

β

nαnβkTαβCαβ

nDαβ

(
vα − vβ

) = 0 (α = i, e),

(27)

jE = wrad, (28)

eJiE +
3nek

2Te

min
(Te − Th)

(
na

Dea
+

ni

Dei

)
= 0, (29)

ni = ne. (30)

Equation (26) signifies that ionization is (locally) balanced by
recombination. Equations (27) may be interpreted as Ohm’s
law for the ions and the electrons. Equation (28) signifies
that Joule heating of the plasma is balanced by losses of
plasma energy through radiation, which are much larger than
losses due to heat conduction and due to enthalpy transport
by diffusion fluxes; the limiting case of the plasma energy
balance dominated by radiation. Equation (29) signifies that
Joule heating of the ions is balanced by the energy transferred in
elastic collisions to the electron gas. (In fact, the Joule heating
of the ions is very small under conditions of interest and the
difference Te − Th predicted by this equation is negligible;
see below.) Equation (30) signifies electrical neutrality of the
plasma.

Strictly speaking, equation (26) is not equivalent to
the Saha equation, since the ionization rate constant ki in
equation (26) depends on ne (due to decay of excited states

5
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Figure 1. Distributions of parameters in the near-cathode region in mercury at p0 = 100 bar, Tw = 3000 K, jc (A m−2) = 106 (a), 107

(b), 108 (c).

due to radiation escape; see appendix A). For given Te, Th and
p, equation (26) under the assumption ni = ne may be written
as a cubic equation for ne. This equation has three real roots,
of which only one is positive.

The reference point r = r0 in equation (21) is naturally
identified with the upper boundary of the calculation domain,
then p = p0 at x = L.

Equations (26)–(30) are solved jointly with equations (19)
and (20) at given values of p = p0 and j = jL (here jL is the
local electric current density at x = L which is related to jc:
jL = −jcr

2
c /(rc + L)2). Values of ni, ne, Te and Th found in

this way are used as boundary conditions at the upper boundary
of the calculation domain. As mentioned above, the particle
densities obtained in this way deviate from those predicted by
the Saha equation; we note right now that these deviations are
negligible for Hg at all jc considered and for Ar at high and
intermediate jc; they reach about 100% for Ar at low jc. The
discrepancy between Th and Te is negligible (of the order of
10−6) for all conditions treated in this work.

3. Results and discussion

The above-described boundary-value problem (which is quite
stiff) is solved numerically as described in appendix B. Results
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Figure 2. Distributions of electric field and electrostatic potential in
the near-cathode region in mercury at p0 = 100 bar, Tw = 3000 K.
Solid: electric field. Dashed: potential. a, b, c: jc (A m−2) = 106,
107, 108, respectively. Circles: points where separation of charges
reaches 1%.

of calculations of the near-cathode region in very high-pressure
mercury and atmospheric-pressure argon arcs reported in this
work refer to a hemispherical tungsten cathode of radius
rc = 1 mm.
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3.1. Distributions of plasma parameters in the near-cathode
region and current–voltage characteristics (CVCs)

In figures 1–6, distributions of parameters in the near-cathode
region are shown for different values of the density jc of electric
current from the plasma to the cathode surface. The parameters
shown include densities of the ions and the electrons ni and
ne, electron and heavy-particle temperatures Te and Th, the
ion current density ji = eJi normalized by the local electric
current density j , the electric field E and electrostatic potential
ϕ. (Zero of potential is chosen at the surface of the cathode.)
Arrows on the left of the first y-axis in figures 1, 3 and 5
depict the electron density value nem = 4jem/eCe which
would correspond to equilibrium between electron emission
from the cathode surface and the flux of electrons returning
to the cathode from the plasma, cf the boundary condition
(22). A logarithmic scale in x must be employed in order
to obtain informative figures; therefore, the distributions are
shown down to a small but non-zero value of x which was
chosen taking into account mean free paths and equals 10−8 m
for Hg and 10−7 for Ar.

Another distribution shown in figures 1, 3 and 5 is that
of nS, the charged particle density, evaluated in terms of local
heavy-particle and electron temperatures Th and Te with p =
p0 by means of the Saha equation. Also shown isTeq the plasma
temperature which would occur at the same current density in
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Figure 4. Distributions of electric field and electrostatic potential in
the near-cathode region in mercury at p0 = 100 bar, Tw = 4000 K.
Solid: electric field. Dashed: potential. a, b, c: jc (A m−2) = 106,
107, 108, respectively. Circles: points where separation of charges
reaches 1%.

a plasma with a local balance of particle numbers, momentum
and energy. (More precisely, equations (26)–(30) jointly with
equations (19) and (20) and with equation p = p0, which is
used instead of equation (21), are solved at each x with the local
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value of j . The electron temperature obtained, which virtually
coincides with the heavy-particle temperature as mentioned at
the end of section 2.2, is designated Teq.) As x decreases, Teq

increases, which is a consequence of the increase in the local
current density in the direction to the cathode originating in
the spherically symmetric geometry being treated. At small
distances from the cathode surface, x � rc, j becomes
virtually constant and so does Teq.

Figures 1–4 refer to mercury plasma at pressure p0 =
100 bar. Figures 1 and 2 refer to the case Tw = 3000 K,
figures 3 and 4 refer to Tw = 4000 K. Consider first the
region x � 100 µm in the case of a low current density
at the cathode surface; figures 1(a) and 3(a). One can see
that ne ≈ ni here, i.e. the plasma is quasi-neutral; ne ≈ nS,
i.e. the plasma is in ionization (Saha) equilibrium; Te ≈ Th,
i.e. the plasma is in thermal equilibrium. In the framework of
the description of the plasma employed in this work, which
does not involve the population of excited states, these three
kinds of equilibrium jointly amount to the LTE of the plasma.
Furthermore, Te ≈ Teq in the region considered, i.e. the
energy balance of the plasma is dominated by radiation. In
the following, this region will be referred to as a region of
radiation-dominated LTE plasma. The plasma temperature
and the charged particle density in this region increase with a
decrease in x; a consequence of the above-described increase in
Teq originating in the geometrical increase in the local current
density.
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Figure 6. Distributions of electric field and electrostatic potential in
the near-cathode region in argon at p0 = 1 bar, Tw = 3500 K. Solid:
electric field. Dashed: potential. a, b, c: jc (A m−2) = 106, 107,
7.8 × 107, respectively. Circles: points where separation of charges
reaches 1%. Squares: points where the function ϕ(x) attains a
maximum value.

A layer separating the region of radiation-dominated LTE
plasma from the cathode, in which deviations from LTE and the
equilibrium between Joule heating and radiation are localized,
will be referred to as a near-cathode non-equilibrium layer. The
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thickness of this layer is about 100 µm at low current densities
at the cathode surface (figures 1(a) and 3(a)) and somewhat
smaller at higher current densities (figures 1(b) and (c), 3(b)
and (c)). The latter is due to a higher temperature in the region
of the radiation-dominated LTE plasma.

As x decreases and one leaves the region of radiation-
dominated LTE plasma and enters the non-equilibrium layer,
the equilibrium between Joule heating and radiation losses is
the first to break down: while Teq in the non-equilibrium layer
weakly increases in the direction of the cathode or is virtually
constant, Te and Th, still being equal to each other, deviate
from Teq in the direction of lower values, i.e. pass through a
maximum and then start decreasing: cooling of the plasma by
the cathode comes into play. Hence, one can introduce a layer
which is adjacent to the region of radiation-dominated LTE
plasma and in which the energy balance of the plasma is no
longer dominated by radiation, although the plasma is still in
LTE. This layer may be called the layer of thermal perturbation.

As x decreases further, Th rapidly decreases and
approaches the temperature of the cathode surface. Te initially
(in the layer of thermal perturbation) decreases jointly with
Th, but very soon deviates from Th and starts decreasing
much more slowly than does Th. In other words, thermal
equilibrium breaks down, and so does LTE on the whole.
The ionization equilibrium and quasi-neutrality still prevail.
Hence, one can introduce a layer which is adjacent to the
layer of thermal perturbation and in which electron and heavy-
particle temperatures are no longer equal, although the plasma
is still quasi-neutral and ionization equilibrium still holds, a
layer of thermal non-equilibrium.

At still smaller x, ni and ne deviate from nS in the
direction of lower values: the ionization equilibrium breaks
down. Quasi-neutrality breaks down very shortly afterwards,
i.e. deviations between ni and ne occur and a space-charge
sheath is formed. In most cases, the density of ions ni in
the space-charge sheath exceeds the electron density ne, an
exception being the case of a hot cathode and a relatively low
current density, which is shown in figure 3(a). In the latter
case, the space-charge sheath comprises two zones: the outer
zone 10−7 m � x � 10−6 m, where ni slightly exceeds ne,
and the inner zone x � 10−7 m, where ne exceeds ni and is
approximately equal to nem.

In the cases shown in figure 1, the ion density does not
change much in the space-charge sheath except in the vicinity
of the sheath edge. It may seem that this behaviour contradicts
the boundary condition (23). In fact, there is no contradiction:
the computed distributions ni(x) rapidly decrease down to zero
in a very thin layer adjacent to the cathode, which is positioned
in the region x < 10−8 m and is not shown on the graphs.
(This is the so-called ion diffusion layer [31, 33], which is
characteristic of the hydrodynamic description of near-cathode
layers.)

One can see from figures 2 and 4 that there is a very strong
electric field directed to the cathode in the space-charge sheath.
The electric field outside the sheath, i.e. in the quasi-neutral
plasma, is substantially lower and is not visible on the graph,
except in the case of a hot cathode and a low current density
represented by the solid line a in figure 4. The electric field in

the sheath is non-monotonic in the latter case, which conforms
to the above-described variation of sign of the space charge in
the sheath occurring in this case. In order to give an idea of
an ‘edge’ of the sheath, points are indicated in figures 2 and
4 where separation of charges reaches 1%. One can see that
an increase in the current density results in a decrease of the
thickness of the space-charge sheath.

Distributions of the electrostatic potential shown in
figures 2 and 4 reveal a more or less pronounced near-
cathode voltage drop, which can be identified with the potential
difference between the point in the plasma where separation
of charges reaches 1% and the cathode surface. (It is not very
well pronounced in the case of high Tw and low jc, which is
depicted by line a in figure 4; however it is quite unambiguous
if the linear scale in x is used.) As should have been expected,
the near-cathode voltage drop decreases with increasing Tw

and increases with increasing jc. The increase in potential in
the region x � 10−4 m is due to resistance of the bulk plasma.

Figures 5 and 6 refer to the argon plasma at pressure
p0 = 1 bar and Tw = 3500 K. In the case of a high current
density shown in figure 5(c), the near-cathode region has the
same structure as that in the case of Hg shown in figures 1 and 3:
one can identify the region of radiation-dominated LTE plasma,
the layer of thermal perturbation, the layer of thermal non-
equilibrium and the space-charge sheath. A difference is that
quasi-neutrality of the plasma under conditions of figure 5(c)
breaks down at considerably smaller x than those at which
the ionization equilibrium breaks down, rather than at nearly
the same x as is the case for Hg. As a consequence, one can
identify one more layer: the one between the layer of thermal
non-equilibrium and the space-charge sheath. Here, equilibria
of all kinds, including ionization equilibrium, have already
broken down, the only exception being the quasi-neutrality of
the plasma which still holds. This layer is usually referred to
as an ionization layer. Note that such a structure of the near-
cathode non-equilibrium layer is similar to the structure of the
near-anode perturbation region in high current arcs proposed
in [35, 36] . Another difference between the distributions
shown in figure 5(c) and those depicted in figures 1 and 3
is that Te and Th in the layer of thermal perturbation deviate
from Teq in the direction of higher values. One more difference
is that the thickness of the near-cathode non-equilibrium layer
in this case is considerably larger than that under conditions of
figures 1–4.

In the case of an intermediate current density, shown in
figure 5(b), the region of radiation-dominated LTE plasma is
not very well pronounced: although the electron and heavy-
particle temperatures at x � 10−4 m are rather close to Teq,
there is still a visible difference. While in all the above-
discussed cases thermal equilibrium breaks down before (i.e. at
larger x) the ionization equilibrium does, it happens the other
way round under the conditions of figure 5(b). Comparing
figures 5(c) and (b) and also solid lines c and b in figure 6,
one can conclude that an increase in the current density under
these conditions results in an increase in the thickness of the
space-charge sheath, in contrast to what happens under the
above-discussed conditions of a very high-pressure Hg plasma.

The case of a relatively low current density is shown in
figure 5(a). Also plotted in this figure is nb, the charged
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Table 1. Components of the electric current density at the cathode surface, electron temperature at the point of maximum positioned inside
the space-charge sheath, fraction of ion current generated outside the near-cathode layer and density of energy flux to the cathode surface.

Figure jiw/jc jew/jc jem/jc j (cd)
e /jc T (max)

e (103 K) jisjc/jsjiw qc (W m−2)

1(a) 0.374 0.626 1.313 0.687 16.9 −0.014 1.25 × 107

1(b) 0.640 0.360 0.491 0.131 45.0 0.020 2.32 × 108

1(c) 0.762 0.238 0.281 0.043 74.1 0.070 3.55 × 109

3(a) 0.004 0.996 46.43 45.43 — 0.668 9.22 × 105

3(b) 0.024 0.976 7.716 6.740 — 0.170 −1.18 × 107

3(c) 0.160 0.840 2.033 1.193 — 0.065 −1.07 × 108

5(a) 4 × 10−4 1.000 4.898 3.898 — −0.025 −3.67 × 106

5(b) 0.216 0.784 0.824 0.040 18.5 0.011 4.14 × 107

5(c) 0.760 0.240 0.242 0.002 430 0.022 1.29 × 1010

particle density evaluated in terms of local Th and Te with
p = p0 under the assumption of local balance of ionization
and recombination and quasi-neutrality, i.e. with the use of
equations (26) and (30). One can see that there is a visible
discrepancy between nS and nb in this case; note that nS

coincides with nb to graphical accuracy in all the other cases.
The region of radiation-dominated LTE plasma is absent in this
case, the reason being relatively low values of the temperature
Teq and, consequently, of the electron density. In fact, quasi-
neutrality is the only kind of equilibrium that holds in this
case: equalities Te = Teq, Th ≈ Te and ne = nb, while being
imposed by the boundary conditions at the upper boundary of
the calculation domain, x = 10−2 m, are violated very close
to this boundary. ne in the space-charge sheath is much higher
than ni, accordingly the electric field in the sheath is directed
from the cathode and the sheath voltage is negative.

Distributions of the electrostatic potential in the Ar
plasma, shown in figure 6, do not reveal an increase due to a
resistance of the bulk plasma which is seen in figures 2 and 4.
In fact, in the case of an intermediate current density (line b)
a decrease in potential is seen in the range x � 3 × 10−4 m.
In the case of a high current density (line c) a comparable
decrease in potential occurs in the range x � 3 × 10−5 m. In
both cases, the decrease in potential starts approximately at the
edge of the ionization layer. On the other hand, the potential
difference in the ionization layer in the case of intermediate
current density is comparable to the sheath voltage. Therefore,
it seems natural in the case of the atmospheric-pressure argon
plasma to define the near-cathode voltage drop as the potential
difference between the point in the plasma where the function
ϕ(x) attains a maximum value (these points are marked by
squares in figure 6) and the cathode surface.

In virtually all the above-described cases, the fraction of
current transported by the ions, ji/j , in the outer section of the
near-cathode region is much lower than in the inner section,
and the transition from low to higher values occurs in the
region where the ionization equilibrium breaks down. The
only exception from this pattern occurs under conditions of
figure 5(a), where ionization equilibrium does not take place.
In some cases, the contribution of the ion current is appreciable
in the inner section of the near-cathode region and negligible
in the outer section, figures 1, 3(c), 5(b) and (c). In other cases,
it is negligible in the inner section of the near-cathode region
as well, figures 3(a), (b) and 5(a). It is interesting to note a
change in the sign of the ion current that occurs in the case

of the Ar plasma at approximately the same point where the
charged particle density attains a maximum value.

There are two maxima of the electron temperature for Hg
at Tw = 3000 K (figure 1), one inside the space-charge sheath
and the other in the outer part of the non-equilibrium layer. The
first maximum considerably exceeds Teq, the second maximum
is close to the local value of Teq. Only the second maximum
occurs for Hg at Tw = 4000 K (figure 3) and for Ar at a low
current density (figure 5(a)). Only the first maximum occurs
for Ar at intermediate and high current densities (figures 5(b)
and (c)). The physics of the second maximum has already been
discussed: the plasma temperature in the region of radiation-
dominated LTE plasma increases in the direction of the cathode
due to the geometrical increase in the local current density and
starts decreasing when cooling of the plasma by the cathode
comes into play. The physics of the first maximum is discussed
below.

Values of the components of the electric current density
at the cathode are given in table 1. Here jiw = −eJi|x=0

and jew = eJe|x=0 are the densities of electric currents
transported from the plasma to the cathode surface by the ions
and, respectively, electrons; j

(cd)
e = eneCe

4 |x=0 is the density
of electric current transported by plasma electrons moving
to the cathode surface due to random motion. (Obviously,
jc = jiw + jew, jew = jem − j

(cd)
e .) Also shown in table 1 is

the electron temperature at the first maximum, T (max)
e , in cases

where this maximum exists.
One can see that in all the cases jew > 0, i.e. the electron

emission is sufficient to ensure that the electron flux is directed
from the cathode surface into the plasma and not the other way
round, cf equation (22). With the increase in j at constant Tw,
the fraction of the ion current increases and the fraction of the
current of plasma electrons decreases. With the increase in
Tw at constant j (for the mercury plasma), the fraction of the
ion current decreases and the fraction of the current of plasma
electrons increases.

It is convenient to consider the ratio jem/jc in order to
understand the data shown in table 1. Let us first consider cases
where this ratio is below unity (cases shown in figures 1(b),
(c), 5(b) and (c)). The electron current jew = jem − j

(cd)
e

is insufficient to ensure the prescribed current jc and an
appreciable ion current exists. Hence, there is an intensive
ionization process in the near-cathode region and there is a
substantial supply of energy to the electron gas in the near-
cathode region that makes the ionization possible. This energy
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Figure 7. CVCs of the near-cathode layer at a fixed temperature of
the cathode surface in mercury at p0 = 100 bar, Tw = 3000 and
4000 K, and argon at p0 = 1 bar, Tw = 3500 K. Solid: this work.
Dashed: the model [3, 44, 45].

supply occurs through acceleration in the space-charge sheath
of the electrons emitted by the cathode surface. Hence, the
electric field in the sheath is high and very few plasma electrons
can overcome it and reach the cathode surface, so j

(cd)
e /jc � 1.

If jem/jc exceeds, but is comparable to unity (cases shown
in figures 1(a) and 3(c)), the net electron current is still below
jc, because of the current of plasma electrons, and the ion
current is still appreciable. If jem/jc � 1 (cases shown
in figures 3(a), (b) and 5(a)), the ion current is negligible,
jiw/jc � 1, and there is a very high current of plasma electrons
which virtually compensates jem and thus reduces the net
electron current to the prescribed value jc.

Now the reason for the appearance of the above-described
maximum of Te inside the space-charge sheath is clear: it is a
manifestation of a strong supply of energy to the electron gas
in the space-charge sheath, which occurs in the cases where
jem/jc is below or slightly above unity and makes possible
the generation of an ion current necessary to compensate the
deficit of the electron current; the height of this maximum is
bigger the lower is ratio jem/jc.

CVCs of the near-cathode plasma for a fixed temperature
of the cathode surface are shown in figure 7; here U is the near-
cathode voltage drop defined as described above. All CVCs
are monotonically growing. A cusp revealed by the CVC in
the case of atmospheric-pressure argon is related to the change
in sign of the electric field at the cathode surface, which occurs
at jc = 2.4 × 106 A m−2 affects the electron emission current.
The slope dU/djc of the CVC in the case of argon starts rapidly
increasing as jc exceeds approximately 7×107 A m−2; one can
say that CVC approaches ion saturation. This is why the space-
charge sheath under conditions of figure 5(c) is thicker than that
under conditions of figure 5(b) and also why the modelling in
the case of atmospheric-pressure argon was performed in the
range of jc slightly more narrow than that in the case of mercury
(up to 7.8 × 107 A m−2 instead of 108 A m−2).

3.2. Energy balance of the near-cathode plasma

The most important characteristic to be predicted by a model
of the near-cathode plasma region is the density of energy flux
coming from the plasma to the cathode surface. A formula
governing this quantity in the framework of the hydrodynamic
approach being employed in this work is obtained with the
use of the expression for the density of plasma energy flux
represented by the vector in square brackets on the left-hand
side of equation (14) (note that the first and second terms cancel
by virtue of equation (19)):

qc =
[ (

5

2
kTe + Af

)
(−Je) − he

+ (Ai − Af)(−Ji) − hhp

]
x=0

. (31)

Using boundary conditions (25) and (22), this expression may
be rewritten as

qc = −jem

e
(Af + 2kTw) +

[
neCe

4
(Af + 2kTe)

]
x=0

+ (Ai − Af)[−Ji]x=0 + [−hhp]x=0. (32)

The first term on the right-hand side describes cooling of
the cathode surface by thermionic emission; note that Af

represents the energy necessary to extract an electron from
the cathode and 2kTw is the average kinetic energy carried
away by an emitted electron. The second term on the right-
hand side describes heating of the cathode surface by plasma
electrons, evaluated taking into account the energy released
at the cathode surface as a result of absorption of electrons.
The third term accounts for energy released at the cathode
surface as a result of neutralization of ions. The fourth term
accounts for energy transported to the cathode surface by
heavy-particle heat conduction and the effect inverse to thermal
diffusion. Note that equation (32) bears some resemblance to
expressions for the energy flux to the cathode employed in
simplified models with a collision-free space-charge sheath.
For example, one can compare this equation with equation (13)
of [3] (Z in the latter equation should be set equal to unity and
Aeff replaced with Af ): the terms accounting for thermionic
cooling and heating by plasma electrons are identical; the
term of equation (32) accounting for the energy released at
the cathode surface as a result of neutralization of ions is also
present in equation (13) of [3]; the difference is that the term
accounting for heavy-particle heat conduction is absent from
equation (13) of [3] and a term accounting for kinetic energy
of incident ions appears instead.

Under condition of practical interest, energy flux from
an arc plasma to the surface of a thermionic cathode must
be sufficient to heat the surface up to temperatures necessary
for sufficiently strong thermionic emission. If the cathode
is undoped and there are no additives in the plasma which
could contribute to a reduction of the work function through
formation of monolayers on the cathode surface, then the
temperature of the cathode tip is around 3000 K. Assuming
1000 K for the temperature of the base of the cathode,
10 mm for the cathode height and 100 W m−1 K−1 for thermal
conductivity of cathode material (thermal conductivity of
tungsten at 2000 K), one can estimate qc as 2 × 107 W m−2.
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Note that this value refers to the diffuse mode of current
transfer; qc is considerably higher in the spot mode.

Values of qc calculated for conditions of figures 1–6 are
given in table 1. One can see that in the cases shown in
figures 3(b), (c) and 5(a) qc is negative, i.e. the cathode surface
is too hot for given values of the current density and thermionic
emission cooling outweighs all heating mechanisms. It has
been proved that the cathode surface cannot reach temperatures
that high [37]. In the case shown in figure 3(a) qc is positive,
however by more than an order of magnitude smaller than the
above-mentioned value of 2×107 W m−2, hence this case is of
no practical interest as well. One can conclude that only those
cases may be of practical interest in which a strong supply of
energy to the electron gas occurs in the space-charge sheath,
namely, cases shown in figures 1(a)–(c), 5(b) and (c). Only
these cases will be considered in the following. Note that
the case shown in figure 5(c) can hardly be realized since the
near-cathode voltage is too high in this case; however this case
is maintained under consideration since it is convenient for
investigation of trends.

Let us study the balance of energy of electron gas in
the near-cathode region under conditions of a strong supply
of energy. Integrating equation (10) over the spherical
layer comprised between the surface of the cathode and the
(spherical) surface x = const, one obtains an equation of
integral balance of the energy of electron gas in the layer, which
may be written in the form

Wc + Wpl = WJ − Wel − Wi − Wrad, (33)

Wc = −
[

5

2
kTeJe + he

]
x=0

, Wpl = B

[
5

2
kTeJe + he

]
,

WJ =
∫ x

0
(−eJe)EB dx, (34)

Wel =
∫ x

0

3nek
2Te

min
(Te − Th)

(
na

Dea
+

ni

Dei

)
B dx, (35)

Wi = Ai(BJe − Je|x=0), Wrad =
∫ x

0
wradB dx. (36)

The physical sense of terms of equation (33) is clear: Wc is the
density of energy flux brought by the electrons to the cathode
surface; Wpl is the energy flux transported by electrons leaving
the layer to the outside plasma; WJ is electrical power supplied
to the electron gas inside the layer; Wel, Wi and Wrad are powers
lost by the electrons inside the layer in elastic collisions with
the heavy particles, in the process of ionization of atoms and
through radiation, respectively.

In figure 8 the terms of equation (33) are shown for
mercury at Tw = 3000 K and jc = 106 and 108 A m−2 and
for argon at jc = 107 A m−2 (i.e. for conditions corresponding
to figures 1(a), (c) and 5(b)). One can see that in all the cases
Wc < 0, i.e. the electron emission is sufficient to ensure that
the flux of electron energy is directed from the cathode surface
into the plasma and not the other way round, cf equation (25).
Close to the cathode, Wpl ≈ WJ: the emitted electrons transport
in the direction to the plasma virtually all of the energy they
have received from the electric field after leaving the cathode.
The energy transported by the electrons is accumulated, i.e.

Wpl increases with x. Eventually, the ionization losses come
into play, then Wpl passes through a maximum and starts
decreasing.

It is interesting to note that the maximum of the electron
temperature Te inside the space-charge sheath occurs at a
smaller distance from the cathode surface than does the
maximum of the density Wpl of energy flux transported by
electrons or, in other words, before the ionization losses come
into play in full. The reason is illustrated by figure 9, where
functions Te and Wpl are shown jointly with components of
the function Wpl. Here hee = 5

2kTeJe is the energy flux
due to the enthalpy transport by electron current, heT and
hev designate the first and second terms on the right-hand
side of equation (15) and describe electron energy fluxes due
to, respectively, heat conduction and the effect inverse to
the thermal diffusion. Also shown is the fraction of current
transported by the electrons. If enthalpy transport were the
dominating mechanism of the electron energy transport, then
the points of maximum of Te and Wpl would be close to each
other (one can see from figure 9 that variations of Je are small
in this region). In reality, however, a strong heat conduction
is present which cools down the electron gas even before the
ionization losses come into play in full.

Let us proceed to the energy balance of the plasma
on the whole. Integrating equation (14) over the spherical
layer comprised between the surface of the cathode and
the (spherical) surface x = const and taking into account
equation (19), one obtains an equation of integral balance of
the energy of the plasma in the layer, which may be written in
the form

qc + qpl = qJ − Wrad, (37)

where

qpl = B

[(
5

2
kTe + Af

)
Je + (Ai − Af )Ji + he + hhp

]
,

qJ = jcϕ. (38)

The physical sense of equation (37) is clear: the sum of the
energy fluxes from the layer to the cathode surface and to the
outside plasma (qc and qpl, respectively) equals the difference
between qJ the electrical power supplied to the layer and Wrad

the irradiated power. Different versions of this equation have
been well known since the work [38]. Relative magnitudes of
terms of equation (37) are illustrated by figure 10.

Simplified models of the near-cathode region in high-
pressure arc discharges are based on the concept of a near-
cathode layer defined as a region that gives dominating
contributions to the near-cathode voltage drop and generation
of ion current coming to the cathode. It seems natural in the
framework of the present (unified) model to identify this layer
with the region limited by a point where charge separation
amounts to 1%, in the case of the very high-pressure mercury
plasma, and a point where the potential distribution attains
a maximum value, in the case of the atmospheric-pressure
argon. The fraction of the ion current density evaluated at
the point defined in such a way, jis/js, represents a measure of
the ion current generated outside the near-cathode layer, and
one should compare this value with the value of the fraction
of ion current at the cathode surface, jiw/jc. The ratio of these
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two values is given in table 1 for conditions of figures 1, 3 and
5. (Since j is nearly constant in the region being considered,
this ratio is in fact quite close to jis/jiw.) One can see that
this ratio is very small in all the cases of practical interest.

Hence, the near-cathode layer defined in this way indeed gives
a dominating contribution to the generation of ion current.

Circles and squares in figure 10 designate the position
of the edge of the near-cathode layer defined in such a way.
In all the cases, radiation losses inside the near-cathode layer
play a minor role. qpl at the edge of the layer is very small
in the case of mercury at Tw = 3000 K and jc = 106 A m−2

and evidently positive in the other cases. The latter means
that it is the near-cathode layer that heats the adjacent plasma
in most cases rather than the other way round. This result
confirms a similar conclusion derived in [39] for a free-burning
arc in atmospheric-pressure argon by means of a model based
on a separate treatment of the near-cathode layer and a two-
temperature ionization-equilibrium bulk plasma.

3.3. Limitations of the model

The hydrodynamic approach being used in this work is
applicable provided that a number of conditions are satisfied.
As far as the ions are concerned, the mean free path of collisions
between the ions and the atoms, λia, should be much smaller
than the local length scale Li of variation of parameters of the
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ion species; work of the electric field over the ion mean free
path should be considerably smaller than the thermal energy
of the neutral atoms:

λia � Li, e|E|λia � kTh. (39)

As far as the electrons are concerned, the length of
Maxwellization of electrons, λm, should be much smaller than
the local length scale Le of the variation of the parameters
of the electron species; the ratio of average frequencies of
momentum transfer in electron–electron and electron–atom
collisions should be much larger than the particle mass ratio:

λm � Le, ν̄ee/ν̄ea � me/ma. (40)

Note that ν̄ee = neCeQ̄
(1,1)
ee and ν̄ea = naCeQ̄

(1,1)
ea ; here and

further Q̄
(1,1)
αβ designate the energy-averaged cross sections for

momentum transfer evaluated as described in appendix A.
The mean free path for collisions between ions and atoms

is defined as λia = 1/(ni+na)Q̄
(1,1)

ia . (For low ionization degree
λia coincides with the conventional mean free path of ions in
the gas of atoms, while for a plasma close to full ionization
λia represents the mean free path of atoms in the ion gas.) The
length of Maxwellization is defined as (see appendix C of [40])

λm = 1√
neQ̄

(1,1)
ee (neQ̄

(1,1)
ee + naQ̄

(1,1)
ea )

. (41)

The local length scales of variation of parameters of the ion
and electron species are defined as

Li = ni

∣∣∣∣dni

dx

∣∣∣∣
−1

, Le = ne

∣∣∣∣dne

dx

∣∣∣∣
−1

. (42)

Distributions of the above-described length scales in the
near-cathode layer are shown in figure 11. Singularities of
the dependences Li(x) and Le(x) at the extreme points of
functions ni(x) and, respectively, ne(x) are of no interest in

the present context and should be disregarded. The edge of
the space-charge sheath in figure 11 is conveniently indicated
by a merger of the curves Li and Le; the region where the ion
current is generated may be identified with the use of the ratio
ji/j which for convenience is added to this figure.

In the case of a very high-pressure mercury plasma
(figures 11(a) and (b)), Li exceeds λia by at least an order
of magnitude throughout the whole near-cathode region. In
the case of an atmospheric-pressure argon plasma at the
intermediate current density (figure 11(c)), Li exceeds or
considerably exceeds λia in most of the near-cathode region, an
exception being a narrow region in the vicinity of the sheath
edge where the two lengths are close. At the high current
density (figure 11(d)), Li is below λia in the space-charge
sheath and in the inner part of the ionization layer.

Distributions of the ratio e|E|λia/kTh (which are skipped
for brevity) are as follows. In the case of a very high-
pressure mercury plasma, this ratio is of order 10−4–10−2 in
the quasi-neutral plasma and reaches values of order unity
in the space-charge sheath. In the case of an atmospheric-
pressure argon plasma at the intermediate current density, this
ratio is of order 10−3–10−1 in the quasi-neutral plasma and
reaches values of order 10 in the space-charge sheath. It
follows that the assumption of the ion distribution function
being close to a Maxwellian function with a temperature equal
to that of neutral atoms is justified in the quasi-neutral plasma
but not in the sheath. Results of the present calculations that
are skipped for brevity show that the dominating mechanism
of ion transport in the sheath is drift in the sheath electric
field; diffusion is a minor effect. Hence, the mobility of
the ions is the only relevant transport coefficient of the ions.
Since the frequency of collisions of (singly charged) ions with
atoms of a parent gas depends on the collision energy rather
weakly, the dependence of the ion mobility on the shape of
the ion distribution function is rather weak as well. Therefore,
deviations of the ion distribution from a Maxwellian function
with a temperature equal to that of neutral atoms, which are
likely to occur in the sheath, should not cause an appreciable
error in the above-described cases. This reasoning does not
apply in the case of an atmospheric-pressure argon plasma at
high current densities: e|E|λia/kTh in this case is of order of
10−3–10−2 outside the ionization layer, becomes comparable
to unity in the ionization layer and reaches values of the order
of 102 inside the sheath; hence deviations of the ion distribution
from a Maxwellian function with a temperature equal to that
of neutral atoms are not confined to the sheath but occur in the
ionization layer as well.

One can conclude that in the case of a very high-pressure
mercury plasma the hydrodynamic (diffusion) description of
motion of the ions, used in this work, is reasonably well
justified in the whole near-cathode region, including the space-
charge sheath. This description remains reasonably well
justified in the case of an atmospheric-pressure argon plasma
at the intermediate current density, but not at the high current
density. A further discussion of this point is given in the
next section.

In the case of a very high-pressure mercury plasma
(figures 11(a) and (b)), the electron Maxwellization length λm
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Figure 11. Mean free path of collisions between the ions and the atoms, length of Maxwellization of electrons and local length scales of
variation of parameters of the ion and electron species. Mercury, p0 = 100 bar, Tw = 3000 K, jc (A m−2) = 106 (a), 108 (b); argon,
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considerably exceeds Le in the bulk of the space-charge sheath.
It follows that in the bulk of the sheath the electron distribution
function may substantially deviate from the Maxwellian one
and the approach to the calculation of the electron transport
employed in this work becomes unjustified. One can hope,
however, that this does not cause an appreciable error since
electron transport in the bulk of the sheath amounts to a trivial
acceleration of emitted electrons by the sheath electric field,
and the latter is induced mostly by the ions since ne � ni

in the bulk of the sheath. This reasoning does not apply
in the vicinity of the sheath edge and in the quasi-neutral
plasma, where ionization comes into play. However, λm here
is comparable to, or considerably smaller than, Le, so one
can hope that the approach being used is at least qualitatively
correct. The situation is similar in the case of an atmospheric-
pressure argon plasma at the intermediate current density:
λm � Le in the sheath, however λm � Le in the ionization
layer. The least favorable situation again occurs in the case
of an atmospheric-pressure argon plasma at the high current
density, where λm � Le both in the sheath and in a substantial
part of the ionization layer, hence the approach being used can
be at best qualitatively correct.

Distributions of the ratio ν̄ee/ν̄ea (which are skipped for
brevity) are as follows. In the case of a very high-pressure
mercury plasma, ν̄ee/ν̄ea is comparable to me/ma in the inner
section of the space-charge sheath and considerably exceeds
me/ma in the vicinity of the sheath edge and in the quasi-
neutral plasma. In the case of an atmospheric-pressure argon
plasma, ν̄ee/ν̄ea is much higher than me/ma in the whole near-
cathode region at the intermediate current density. At the high
current density, ν̄ee/ν̄ea is much smaller than me/ma in the
inner section of the space-charge sheath and much higher than
me/ma in the vicinity of the sheath edge and in the quasi-
neutral plasma, including in the ionization layer. Thus, the
second inequality in (40) is less restrictive than the first one
and does not affect the above conclusions on the validity of the
hydrodynamic approach used in this work.

The boundary conditions imposed at x = L,
equations (26)–(30), are applicable provided that LTE and
the local balance between Joule heating and radiation losses
do occur in the near-cathode plasma and occur at distances
from the cathode small enough for the current transfer to
be locally 1D and convective effects negligible. This is the
case for a very high-pressure mercury plasma, where the
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thickness of the near-cathode non-equilibrium layer, which
separates the region of radiation-dominated LTE plasma from
the cathode, is about 100 µm or even smaller. The thickness
of the near-cathode non-equilibrium layer in an atmospheric-
pressure argon plasma at the high current density is about
3 mm; the approximation of locally 1D current transfer in a
quiescent plasma usually loses its validity at distances from the
cathode surface smaller than that. At the intermediate current
density, the region of radiation-dominated LTE plasma is not
very well pronounced. There is no equilibrium of any kind
except for quasi-neutrality in the near-cathode region at the
low current density.

Thus, the assumption that the plasma at the upper
boundary of the calculation domain is in LTE and its energy
balance is dominated by radiation is justified in the case of a
very high-pressure mercury plasma but not in the case of an
atmospheric-pressure argon plasma. On the other hand, the
plasma–cathode interaction on the whole is governed by the
above-mentioned near-cathode layer which gives dominating
contributions to the near-cathode voltage drop and generation
of ion current to the cathode. This layer has a thickness of
order of 100 µm in the case of an atmospheric-pressure argon
plasma, and it is this layer that heats the adjacent plasma rather
than the other way around. Dependence of this layer on what
happens on scales of the order of 1 mm or larger is weak; hence
inaccurate boundary conditions at the upper boundary of the
calculation domain can hardly spoil a solution in this layer.
Therefore, one can hope that the present model in the case of
an atmospheric-pressure argon plasma represents a reasonable
approximation in the near-cathode layer which governs the
plasma–cathode interaction as a whole, although not on larger
length scales.

Only singly charged ions are taken into account in the
model considered. LTE calculations of partial composition of
a 100 bar Hg plasma and a 1 bar Ar plasma in the temperature
range of up to 20 × 103 K show that the fraction of doubly
charged ions does not exceed approximately 1%, so the
presence of multiply charged ions can be safely neglected
at Te below 20 × 103 K. In the present simulations, the
maximum value of Te in the near-cathode region occurs inside
the space-charge sheath under conditions of practical interest
(figures 1(a)–(c), 5(b) and (c)). However, the formation of
multiple ions is governed not by this value (the local value
of ne is very small), but rather by values of Te in the region
where the ion flux to the cathode is generated. There is only
one case in which the latter values exceed 20 × 103 K, that
of an atmospheric-pressure argon plasma and a high current
density, shown in figure 5(c): Te in the ionization layer is
about 70 × 103 K in this case. We recall that the case
shown in figure 5(c) can hardly be realized since the near-
cathode voltage is too high, so the latter value is probably
exaggerated. Nevertheless, one cannot exclude the possibility
of Te in the ionization layer of an atmospheric-pressure argon
arc exceeding 20 × 103 K.

The latter does not automatically mean that multiply
charged ions are formed under non-LTE conditions of this
work: the second and higher ionizations must occur sufficiently
fast for this to happen. Formation of doubly and triply charged

ions in the ionization layer in an atmospheric-pressure argon
arc was studied numerically in [6] under the assumption that
the electron temperature is constant across the ionization layer
for Te of up to 50×103 K and the current density of 108 A m−2.
It was found that the ion current to the cathode is formed
in an inner section of the ionization layer where the singly
charged ions are dominant, the latter being a consequence of
a successive decrease in rate constants of each subsequent
ionization. Therefore, the ion current can be calculated
accurately enough neglecting the presence of multiply charged
ions, which justifies the neglect of formation of doubly and
triply charged ions also in this work.

Only atomic ions are taken into account in the model
considered. In reality molecular ions may also be present,
which are formed through the conversion reaction

M+ + 2M → M+
2 + M, (43)

where M is Ar or Hg atom. The presence of molecular
ions slightly changes the equilibrium electron density at given
p, Te, and Th. However, much more essential may be the
effect of molecular ions on parameters in the region where
the ion flux to the cathode is generated, because the rate
of recombination of these ions with electrons may exceed
substantially that of atomic ions. The effect of molecular
ions may be neglected if the rate of their recombination with
electrons is much smaller than the ionization rate. An upper
estimate of the recombination rate for molecular ions is given
by the conversion rate; hence a sufficient condition allowing
one to neglect the effect of molecular ions reads kcn

2
ani �

kinane, where kc is the conversion rate constant. Assuming
that the densities of electrons and ions are comparable, one
can rewrite the latter inequality as

kcna � ki. (44)

Using the low-temperature values of the conversion rate
constants for Ar [41] and Hg [42] and assuming that kc

varies with Th proportionally to T
−3/4

h [43], one finds that for
typical Th values about 3000 K the condition (44) is fulfilled
if the electron temperature in the region where the ion flux is
generated exceeds approximately 7 × 103 K for Hg at 100 bar
and 12 × 103 K for Ar at 1 bar. One can see from figures 1
and 5 that inequality (44) is valid for mercury and argon at
the intermediate and high current densities. For mercury at
jc = 106 A m−2 this inequality does not hold and a more
careful study is required; we recall that this inequality is not a
necessary condition but only sufficient.

3.4. Validity of simplified models

3.4.1. Analysis of physical bases of simplified models. Once
dominating physical mechanisms have been identified, one can
analyse physical bases of simplified models of the near-cathode
region in high-pressure arc discharges (which are many; see
review [16] and references therein). The first conclusion
concerns the role of the near-cathode space-charge sheath. The
above-described numerical results have shown that there is an
intensive ionization process in the near-cathode layer and the
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supply of energy to the electron gas that makes the ionization
possible occurs through acceleration of the emitted electrons
in the space-charge sheath. Regimes in which the sheath plays
a minor role are in principle possible; however, they do not
occur under conditions of high-pressure arc discharges. Thus,
the space-charge sheath is of primary importance and models
of plasma–cathode interaction in high-pressure arc discharges
which neglect the sheath cannot be considered as physically
relevant.

Simplified models used in most works (for example
[3, 44, 45], [9] and [11]) employ the assumption of a collision-
free motion of the ions across the space-charge sheath. If the
collisions are rare, the average number of collisions suffered
by an ion while travelling over a distance dx is dx/λia. (Note
that the biggest value of the ionization degree of plasma in
the space-charge sheath under conditions of figures 1, 3 and
5 occurs at the sheath edge under conditions of figure 5(c)
and is about 0.1. In other words, the ionization degree of the
plasma inside the sheath is small in all cases and the length
λia defined in section 3.3 represents the mean free path of an
ion in the gas of atoms.) If the collisions are frequent and the
ions perform a random walk rather than a rectilinear motion,
then the average number of collisions is ν̄ia dx/|vi|, where vi

is the local ion diffusion velocity (so that dx/|vi| represents
the time of diffusion of an ion over the distance dx) and
ν̄ia = na(8kTh/πmia)

1/2Q̄
(1,1)

ia is the local average frequency of
momentum transfer in ion–atom collisions. A uniformly valid
estimate may be obtained by adding up the two expressions
given above. Thus, the average number of collisions suffered
by an ion while crossing the space-charge sheath is estimated
by integrating λ−1

ia + ν̄ia |vi|−1 over the sheath. (We recall
that the sheath is identified with a region where the charge
separation exceeds 1% in the framework of this model.)
Values of this integral for conditions of figures 1(a)–(c), 5(b)
and (c) are 1.4 × 104, 4.7 × 103 , 4 × 102, 4.5 and 0.97,
respectively. One can conclude that in the case of a very high-
pressure mercury plasma the assumption of a collision-free
motion of the ions across the space-charge sheath is definitely
unjustified.

Strictly speaking, this assumption is unjustified in the case
of an atmospheric-pressure argon plasma as well, since the
average number of ion collisions is comparable to unity rather
than small. On the other hand, the only parameter contributed
by a sheath model to the overall evaluation scheme of the
approaches [3, 44, 45], [9] and [11] is the electric field at the
cathode surface, which affects the electron emission current
through the Schottky correction, and one can show similarly
to [46] that surface electric fields calculated in the framework
of models of collision-free and collision-dominated sheaths
are not very different under conditions where the number of
collisions is of the order unity. Besides, the dependence of
the Schottky correction on the surface electric field is not
very strong (square-root). As a consequence, the difference
between values of the Schottky correction obtained with the
use of the two models is typically below 0.1 eV. In other words,
the collision-free and collision-dominated sheath models give
similar results in the intermediate case where the number of
ion collisions in the sheath is of the order unity, and this allows

one to assume that both results are realistic. Thus, both the
simplified approaches [3, 44, 45], [9] and [11] and the model
of this work give a realistic description of the space-charge
sheath in an atmospheric-pressure argon plasma.

The models [3, 44, 45], [9] and [11] comprise separate
treatments of a quasi-neutral ionization layer and a space-
charge sheath with frozen ionization and recombination.
Results of this work show that this approximation is reasonable
for an atmospheric-pressure argon plasma but not for a very
high-pressure mercury plasma: while variations of ji/j under
conditions of figure 5 clearly occur outside the space-charge
sheath, these variations occur virtually simultaneously with the
violation of quasi-neutrality under conditions of figure 1.

The electron temperature in the ionization layer is treated
in [3, 44, 45], [9] and [11] as constant (and is governed by
an equation of integral balance). Results of this work show
that this approximation is reasonable for an atmospheric-
pressure argon plasma: Te varies in the ionization layer from
17.5×103 to 15.4×103 K and from 68.2×103 to 67.6×103 K
under conditions of figures 5(b) and (c), respectively, i.e.
rather weakly. (In the framework of the present model,
the ionization layer is identified with a region confined by
the sheath edge, i.e. a point where the charge separation
exceeds 1% and a point where deviation of ne from nS

reaches 50%.)
It was shown in the preceding section that λia exceeds Li

in a substantial part of the ionization layer in an atmospheric-
pressure argon plasma at high current density or, equivalently,
a high near-cathode voltage U . The coupling between the ions
and the atoms is not strong enough under such conditions and
the conventional hydrodynamic, or diffusion, description of
motion of the ions in the ionization layer loses its validity. This
conclusion confirms the reasoning of the model [3, 44, 45],
in which the ionization layer is described by means of the
multifluid theory [5] that also takes into account, in addition
to the effects accounted for by the diffusion theory, inertia of
the ions and the atoms and momentum exchange between the
ions and the atoms due to volume reactions. A solution for the
ionization layer in atmospheric-pressure arcs in inert gases at
high near-cathode voltages obtained in this way is physically
reasonable and substantially different from that given by the
diffusion theory; see discussion in [16]. The model [11] also
employs the multifluid theory for the ionization layer, although
in a somewhat reduced form; see [16] for a further discussion.
One should assume therefore that the model [3, 44, 45] and
maybe also the model [11] are better justified in the case of
atmospheric-pressure arcs in argon at high U than the present
model.

The conclusion is that the simplified models [3, 44, 45],
[9] and [11] are unjustified in the case of very high-pressure
mercury plasma. The simplified models are reasonably well
justified in the case of atmospheric-pressure argon plasma at
moderate U and some of these models also at high U .

3.4.2. Comparison of results. A comparison of CVCs of
the near-cathode layer for a fixed temperature of the cathode
surface given by the present model with those given by the
simplified model [3, 44, 45] is shown in figure 7. The model
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Figure 12. The density of energy flux to the cathode surface versus the cathode temperature at fixed near-cathode voltage drop. Solid: this
work. Dashed: the model [3, 44, 45]; (a) argon, p0 = 1 bar; (b) mercury, p0 = 100 bar.
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Figure 13. The electric current density at the cathode versus the cathode temperature at fixed near-cathode voltage drop. Solid: this work.
Dashed: the model [3, 44, 45]; (a) argon, p0 = 1 bar; (b) mercury, p0 = 100 bar.

[3, 44, 45] assumes U as a control parameter (and not jc as does
the model of this work.) Being destined for the near-cathode
layer, the model [3, 44, 45] breaks down if U is too low. In
the case of mercury at Tw = 4000 K, the breakdown occurs
at U = 4.0 V, which limits the range of existence of solution
to jc � 3.7 × 107 A m2. In the case of argon, the breakdown
occurs at U = 6.6 V, which limits the range of existence of
solution to jc � 2.3 × 106 A m2. In the case of mercury
at Tw = 3000 K, difficulties related to multiplicity of roots
(see [16]) appear at U > 99 V, which limits the range of
existence of solution to jc � 6.1 × 107 A m−2. In the case
of argon, the dependence jc(U) is non-monotonic, due to
inertia of the ions and the atoms in the ionization layer and
the momentum exchange between the ions and the atoms due
to volume reactions. (We recall that these effects are not
described by the diffusion equations used in this work but are
taken into account in the multifluid theory employed in the
model [3, 44, 45].)

Figure 7 conveniently illustrates the range of existence of
solution in the framework of the simplified model [3, 44, 45]
and also general trends exhibited by this solution, which are

similar to the ones displayed by the model of this work except
for the above-mentioned non-monotony of the dependence
jc(U). However, what is needed for the calculation of plasma–
cathode interaction in arc discharges is not CVCs at a fixed
temperature of the cathode surface but rather dependences
of the densities of energy flux and electric current to the
cathode surface on the local surface temperature at a fixed
near-cathode voltage drop; see [16] and references therein.
These dependences predicted by the model of this work and
the simplified model [3, 44, 45] are shown in figures 12
and 13. Again, there is qualitative agreement between the
solutions given by the present model and the simplified model
[3, 44, 45]. In particular, the present model gives a non-

monotonic dependence qc(Tw) in the case of atmospheric-
pressure argon (figure 12(a)), which is well known from
simplified models and represents the root reason for the
existence of multiple modes of current transfer to thermionic
cathodes (see [16] and references therein). In the case of
an atmospheric-pressure argon plasma at moderate U , the
agreement between the two models is not only qualitative but
also quantitative: the simplified solution for U = 11 V is close
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Figure 14. The average electron temperature in the ionization layer
versus the cathode temperature at fixed near-cathode voltage drop.
Argon, p0 = 1 bar. Solid: this work. Dashed: the model [3, 44, 45].

to the solution given by the present model for U = 12 V in the
whole range of Tw considered.

Solid lines in figure 14 depict an average value of the
electron temperature in the ionization layer evaluated by means
of numerical results of this work as 〈Te〉 = (T

(1)
e + T

(2)
e )/2,

where T
(1)

e and T
(2)

e are values of the electron temperature
at the edge of the space-sheath and, respectively, at the
edge of the ionization layer. Dashed lines in figure 14
depict values of the electron temperature in the ionization
layer predicted by the model [3, 44, 45]. There is good
agreement between the two models at moderate Tw, especially
at U = 12 V.

Thus, the present results qualitatively agree with those
given by the simplified model [3, 44, 45], and in the case
of an atmospheric-pressure argon plasma at moderate U the
agreement is not only qualitative but also quantitative. It
should be emphasized that this conclusion conforms to the
discussion of physical justification of the two models given
in the preceding sections: the case of an atmospheric-pressure
argon plasma at moderate U is the only one where both models
are reasonably well justified.

4. Comparison with the experiment

There are a variety of methods of experimental investigation
of plasma–cathode interaction in high-pressure arc discharges,
including spectroscopic measurements of plasma parameters
in the near-cathode region, determination of the near-cathode
voltage drop by means of electrostatic probe measurements and
pyrometric measurements of the cathode surface temperature.
A comparison between the theory and the experiment has
been performed by different authors, e.g. [16] and references
therein. In all cases the comparison was limited to integral
characteristics, such as the near-cathode voltage drop or total
heat losses.

A considerable amount of data on distributions of plasma
parameters in the near-cathode region, in particular, of the
electron temperature and/or density, has been obtained by

spectroscopic measurements, e.g. [47–58] and references
therein. Measured maximum electron temperatures in the
near-cathode region varied over a wide range depending on
experimental conditions and on the mode of operation of the
cathode; for example, values of 9×103 K and 3.6×104 K have
been reported in [56] and respectively, [58]. A comparison
of the experiment with a theory has been virtually inexistent
up to now: there is not much sense in comparing results
of spatially resolved measurements with theoretical values
obtained by means of separate treatments of different sub-
layers with a spatially uniform electron temperature governed
by an equation of integral balance. The present model gives
distributions of parameters across the near-cathode layer and
therefore represents a first step in the direction to make
such a comparison meaningful. The second, and final,
step will consist of combining the present model with the
model of nonlinear surface heating (e.g. [16] and references
therein), which will allow one to simulate the plasma–cathode
interaction as a whole and thus to find the distribution of
parameters not only across the near-cathode layer but along
the cathode surface as well. Until this second step has been
completed, distributions of the electric current density and
temperature along the cathode surface remain unknown; hence
any comparison will be inconclusive. Nevertheless some
useful information can be extracted even at the present stage.

Unfortunately, there are no data on very high-pressure
mercury discharge, for which the hydrodynamic theory should
work best. Let us consider spectroscopic measurements [56],
which were performed with high spatial resolution in argon at
pressures from 1 to 3 bar and in which the electron temperature
was deduced from Boltzmann plots of population densities and
the electron density was determined from measured continuum
intensities. No data on the temperature of the cathode surface
nor on the near-cathode voltage are available in the paper [56];
however, such data have been reported in preceding papers
from the same group. For example, the temperature of the
cathode tip for the plasma pressure p = 2.6 bar, cathode height
of 20 mm and radius of 0.5 mm and the arc current of 4 A can
be taken from figure 8(a) of [59] and equals 3000 K. The near-
cathode voltage drop for these conditions can be taken from
figures 2(a) or 7 of [60] and equals 15 V.

Simulations for the above-mentioned conditions per-
formed with Tw = 3000 K have shown that U equal to 15 V
corresponds to jc = 4.14 × 105 A m−2. Distributions of ne

and Te obtained with these values of Tw and jc are shown in
figure 15 by solid lines. (The parameter rc was set equal to
0.5 mm in these calculations.) Note that the ratio jem/jc for
these conditions is 1.04, so these conditions, in spite of jc

being low in absolute terms, should be considered similar to
conditions of figure 5(b) rather than to those of 5(a). Also
shown in figure 15 are experimental data referring to the axis
of the discharge taken from figure 11 of [56]. The range of
distances from the cathode surface in this figure is limited by
the cathode radius (0.5 mm); in fact, the approximation of lo-
cally 1D (or, more precisely, spherically symmetric) current
transfer, which is used in the modelling, loses its validity at
even smaller x. The discrepancy between the theoretical and
experimental data on the electron temperature is about 20%.
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Figure 15. Lines: calculated distributions of the electron
temperature and density in the near-cathode region. Argon. Lines:
modelling, p0 = 2.6 bar. Solid: Tw = 3000 K,
jc = 4.14 × 105 A m−2. Dashed: Tw = 3140 K,
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The discrepancy between data on the electron density is small
at x � 100 µm, however reaching a factor of about 3 at smaller
distances. As x decreases, the calculated function ne(x) attains
a maximum value at x ≈ 100 µm, while the measured function
monotonically increases in the whole range of x investigated
(down to 25 µm).

A weak point of the above comparison is that the accuracy
of experimental determination of Tw is insufficient to justify the
use of the measured value of Tw as an input parameter. Another
set of calculations has been performed in this connection. First,
the diffuse mode of plasma–cathode interaction in the above-
described conditions has been calculated for the arc current of
4 A by means of the Internet tool [34], which is a Fortran code
based on the model of nonlinear surface heating combined
with the model [3, 44, 45] for the near-cathode plasma layer.
(The near-cathode voltage of 15.2 V was found, which is pretty
close to the above-mentioned experimental value of 15 V.)
The current density of 1.15 × 106 A m−2 and the surface
temperature of 3190 K were found at the centre of the front
surface of the cathode. Simulations performed by means of the
present model with these values of jc and Tw gave a value of
U = 8.9 V, i.e. too low, but a little smaller Tw = 3140 K gave
the right value U = 15 V. Distributions of ne and Te obtained
with the latter values of Tw and jc are shown in figure 15 by
the dashed lines. The discrepancy between the theoretical and
experimental data on the electron temperature is now about
10%. However, the theoretical data on ne deviate from the
experiment more strongly than the data depicted by the solid
lines, although the discrepancy is still within a factor of about
3. The maximum of the function ne(x) has shifted to smaller
x; however this shift is insufficient. In other words, the course
of the distribution ne(x) remains problematic.

Obviously, the above comparison is inconclusive and will
have to be revisited after the present model has been combined
with the model of nonlinear surface heating. If the deviation
between the theory and the experiment on the distribution of
the electron density persists, it will be an indication of the

necessity to re-analyse kinetic and/or transport coefficients
of the electrons and/or the role of molecular ions, or maybe
even of the fact that the diffusion approach is insufficient to
very accurately describe the relaxation of a beam of electrons
emitted by the cathode on distances that small.

While analysing spectroscopic results [56] by means of
the model of nonlinear surface heating, one should keep in
mind the following. In the framework of this model, the
near-cathode voltage drop is assumed to be constant along the
cathode surface, so the highest value of the current density
occurs at the hottest point of the cathode surface. The
latter is the edge of the front surface, where conditions for
thermal-conduction heat removal are the worst and the surface
temperature is about 20 K higher than that at the centre of the
front surface, as the calculations by means of the code [34]
show for the conditions of experiment [56]. (The figure of
20 K refers to a cathode with a flat front surface. If a rounding
of the edge of the cathode is taken into account, the hottest point
will still remain on the rounded part, although the temperature
difference with respect to the centre of the front surface will
decrease: 10 K for the radius of rounding of 100 µm.) A higher
value of jc at the edge will result in higher values of both Te

and ne at distances of interest from the cathode surface (tens
of micrometres and higher). However, the measurements [56]
have shown the opposite trend: Te and ne in the diffuse mode
have maxima at the centre of the front surface of the cathode
rather than at the edge.

This contradiction may be explained as follows. First,
increases in Tw and jc affect distributions Te(x) and ne(x)

in the opposite directions: while an increase in jc enhances
Te and ne, an increase in Tw causes a reduction in Te and
ne. Therefore, an increase in Te and ne at the edge of the
front surface which is caused by an increase in jc is partially
compensated by a decrease in Te and ne caused by an increase
in Tw. Second, the present model allows one to obtain an order-
of-magnitude estimate of the voltage drop in the constriction
zone: it is given by the potential difference between the point
separated from the cathode by a distance equal to, say, the
cathode radius and the edge of the near-cathode layer identified
as described in section 3.2. This potential difference is about
1 V in the above-described simulations for the conditions of the
experiment [56]. One could think therefore that the voltage
applied to the near-cathode layer at the centre of the front
surface of the cathode will be a bit higher than that applied
at the edge, and this effect will be sufficient to ensure higher
Te and ne. Therefore, the model of nonlinear surface heating
may have to be supplemented by a calculation of the potential
variation in the constriction zone while being used for analysis
of the experiment [56].

5. Conclusions

A 1D model of the near-cathode region in high-pressure arc
discharges has been developed. The model is based on
the hydrodynamic (diffusion) approach and treats the whole
near-cathode region in a unified way, without assumptions
of thermal or ionization equilibrium or quasi-neutrality.
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Transport of the plasma species is described by the Stefan–
Maxwell equations, a description which is valid at arbitrary
ionization degree of the plasma in contrast to a description
based on Fick’s law for the ions and the electrons which is valid
provided that the ionization degree is low enough. Boundary
conditions taking into account emission of the electrons by
the cathode surface are formulated. Transport, kinetic and
radiation coefficients of the plasma are evaluated and a method
of numerical solution of the obtained nonlinear boundary-value
problem (which is quite stiff) developed. Numerical results
are reported for very high-pressure mercury arcs, which are
typical of high-intensity discharge lamps, and for an argon
arc at atmospheric pressure, which is a kind of standard high-
pressure arc, and include distributions of plasma parameters
across the near-cathode region, CVCs, and energy flux from
the plasma to the cathode.

Analysis of numerical results has allowed us to identify
physical mechanisms dominating different parts of the near-
cathode region and thus to pin down different sub-layers. The
following sub-layers have been identified in the case of very
high-pressure mercury arcs: the region of radiation-dominated
LTE plasma, the layer of thermal perturbation, the layer of
thermal non-equilibrium and the space-charge sheath. These
sub-layers may also be identified in the case of an atmospheric-
pressure argon arc at intermediate and high current densities
(although the region of radiation-dominated LTE plasma is
not very well pronounced at intermediate current densities);
additionally, one can also introduce in this case an ionization
layer, thus arriving at a structure similar to the one proposed
previously for a near-anode region in high current arcs [35, 36].

Energy flux from an arc plasma to the surface of a
thermionic cathode must be sufficient to heat the surface up
to temperatures necessary for sufficiently strong thermionic
emission. Values of the energy flux that high are ensured
by a strong input of electrical energy into the electron gas
occurring in the space-charge sheath. This input results in
a maximum of the electron temperature in the sheath. The
energy received by the electron gas is spent for ionization;
thus ion current to the cathode is generated, which is needed
to sustain current transfer. These results confirm the point
of view according to which a space-charge sheath is of
primary importance in near-cathode layers of high-pressure arc
discharges. While previously this point of view was supported
by arguments based on a treatment of sub-layers and involving
ion bombardment as a dominating mechanism of heating of
the cathode (e.g. [16] and references therein), in this work
this point of view is supported by a straightforward numerical
modelling of a collision-dominated near-cathode region.

It should be stressed that regimes in which the sheath plays
a minor role are in principle possible; however, they do not
occur under conditions of high-pressure arc discharges. In
other words, local values of the temperature and the current
density at each point of the arc attachment self-adjust in such
a way that there is a space-charge sheath with a sufficiently
strong power input, and the latter occurs, according to the
present numerical results, when the local current density
exceeds the electron emission current or is slightly below it.

The hydrodynamic (diffusion) description of motion of the
ions and the electrons, employed in this work in the whole near-
cathode region, including the space-charge sheath, is justified
in the case of a very high-pressure mercury plasma. In the
case of an atmospheric-pressure argon plasma, this description
remains reasonably well justified at the intermediate current
density, but not at the high current density.

The present analysis has confirmed the assumption of
the primary importance of the space-charge sheath, which
constitutes a physical basis of most of the simplified models
of the near-cathode region in high-pressure arc discharges
(e.g. [3, 44, 45], [9] and [11]), as well as a number of
other assumptions employed by these models. In summary,
these models are reasonably well justified in the case of an
atmospheric-pressure argon plasma at moderate values of the
near-cathode voltage drop, and some of these models remain
justified at high values also; however, the simplified models are
unjustified in the case of a very high-pressure mercury plasma.
The latter is due to two factors: (1) the very large number of
collisions suffered by an ion while crossing the space-charge
sheath in a very high-pressure mercury plasma invalidates the
assumption of collision-free motion of the ions in the sheath,
employed by the above-mentioned simplified models; (2) the
separate treatment of a quasi-neutral ionization layer and a
space-charge sheath with frozen ionization and recombination,
employed by the simplified models, is unjustified in the case
of a very high-pressure mercury plasma since the ion current
to the cathode in this case is generated at least partly inside the
space-charge sheath.

A comparison of results given by the present model with
those given by the simplified model [3, 44, 45] has revealed
qualitative agreement. In the case of an atmospheric-pressure
argon plasma at moderate values of the near-cathode voltage
drop the agreement is not only qualitative but also quantitative.

The present model, being the first one to predict not
only integral characteristics of the plasma–cathode interaction
but also distributions of plasma parameters across the near-
cathode layer, represents a first step to a meaningful theoretical
analysis of results of spectroscopic measurements of plasma
parameters in the near-cathode region. Unfortunately, there
are no experimental data on a very high-pressure mercury
discharge, for which the hydrodynamic theory should work
best, and the comparison is limited to the measurements in
argon [56]. There is good agreement, to about 10–20%,
between the modelling and the experiment as far as the electron
temperature is concerned. However, the calculated electron
density distribution reveals a maximum at about 100 µm from
the cathode surface which is not observed in the experiment;
as a consequence, there is a discrepancy of about a factor of
3 between the data on the electron density. This question will
have to be revisited after the uncertainty in distributions of
the electric current density and temperature along the cathode
surface has been removed by combining the present model with
the model of nonlinear surface heating.
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Appendix A. Transport, kinetic and radiation
coefficients

Let us start with the evaluation of the transport coefficients
appearing in the set of equations formulated in section 2.1.
The binary diffusion coefficients are expressed as

Dαβ = 3π

32

(
8kTαβ

πmαβ

)1/2 1

nQ̄
(1,1)
αβ

, (45)

where Q̄
(1,1)
αβ are the energy-averaged cross sections for

momentum transfer in collisions of particles of species α and
β, which are related to the energy-dependent cross sections for
momentum transfer, Q

(1)
αβ (ε), by the formula

Q̄
(1,1)
αβ = 1

2(kTαβ)3

∫ ∞

0
ε2 exp

(
− ε

kTαβ

)
Q

(1)
αβ (ε) dε. (46)

Note that the quantity (8kTαβ/πmαβ)1/2 represents the mean
relative speed of particles of species α and β.

The average cross section Q̄
(1,1)

ia of ion–atom collisions
is a function of Th and is evaluated by means of an analytical
formula which is taken from [5] (for mercury) or obtained by
fitting the data [61] extended to higher temperatures by means
of results [5] (for argon). Note that the ion distribution function
is assumed to be a Maxwellian function with a temperature
equal to that of neutral atoms, which implies that the work of
the electric field over the ion mean free path is considerably
smaller than the thermal energy of the neutral atoms.

The electron–atom cross section Q̄
(1,1)
ea is a function of Te

and is tabulated by numerically evaluating the integral (46).
The energy-dependent cross section for momentum transfer in
electron–atom collisions, Q(1)

ea (ε), is taken from [62, 63] or [64]
for collisions of electrons with atoms of argon or mercury,
respectively.

Electron–ion collisions are governed by the Coulomb
interaction. Averaging of the energy-dependent electron–ion
cross section (e.g. [27]) by means of equation (46) gives

Q̄
(1,1)

ei = e4 ln �

32πε2
0(kTe)2

. (47)

Here ln � is the Coulomb logarithm (� = 1.24 ×
107T

3/2
e n

−1/2
e , where Te is in K and ne in m−3 [27]).

It is seen from the above that the binary diffusion
coefficients may be introduced in numerical simulations in
a simple and practical way, which is a consequence of the
fact that nDαβ is a function of only one variable Tαβ . (nDei

represents an exception: in addition to a dependence on
Te, it depends weakly on ne via the Coulomb logarithm.
However, it may be evaluated by means of simple analytical
formulae (45) and (47).) General procedures of calculation
of most of the other transport coefficients (e.g. [27]) are
considerably more complex and their use for the purposes of
this work is not warranted. In this work, such coefficients

are either replaced by their limiting values corresponding to
limiting cases of partially or strongly ionized plasmas or are
interpolated between these values. Note that the limiting
cases of partially or strongly ionized plasmas are defined
here by inequalities ν̄ea � ν̄ei or, respectively, ν̄ea � ν̄ei,
where ν̄ea = naCeQ̄

(1,1)
ea and ν̄ei = niCeQ̄

(1,1)

ei are average
frequencies of momentum transfer in electron–atom and,
respectively, electron–ion collisions. The interpolation is
linear over the parameter P defined as P = ν̄ea/ν̄ei =
naDei/niDea. Transport of electrons in partially ionized
plasmas is described by Lorentzian formulae (e.g. [27, 25]).
In this work, these formulae are used under the assumption of
Maxwellian electron energy distribution, which is rigorously
justified if ν̄ee, the average frequency of momentum transfer in
electron–electron collisions, considerably exceeds ν̄eame/ma

and the electron Maxwellization length is much smaller than
a characteristic scale of variation of parameters of the electron
gas. Transport of electrons in strongly ionized plasmas is
described by Spitzer and Härm formulae (e.g. [27]).

Let us proceed to the evaluation of the correction
coefficients Cαβ . The coefficient Cia is governed by the ion–
atom interaction. Since the frequency of collisions of singly
charged ions with atoms of a parent gas depends on the collision
energy rather weakly, this coefficient may be set equal to
unity. For the correction coefficients Cea and Cei values are
assumed that correspond to the limiting cases of a partially or,
respectively, strongly ionized plasma. This choice is based on
the following. Equation (5) for the electrons (with α = e)
contains a term that involves Cea and is proportional to
(ve − va) and a term that involves Cei and is proportional to
(ve − vi). Taking into account that quantities Cea, Cei and
|ve − va|/|ve − vi| are of the order unity, one finds that the
ratio of the two above-mentioned terms is of the order of P .
The above-described choice ensures that the value assumed
for the coefficient Cea is accurate just in that particular case
where the term involving this coefficient is dominating, which
is the case P � 1, i.e. the case of partially ionized plasma.
Similarly, the coefficient Cei is accurate in the particular case
of strongly ionized plasma, P � 1, where the term involving
this coefficient is dominating. In other words, the above-
described choice of coefficients Cea and Cei ensures correct
values of the friction-force term of the transport equation for the
electrons in both limiting cases of partially and strongly ionized
plasmas.

In accord with the above, Cea is obtained as the ratio of the
diffusion coefficient Dea evaluated in the first approximation
of the Chapman–Enskog method to that evaluated by means of
the Lorentzian formula with the Maxwellian electron energy
distribution function:

Cea = 9π(kTe)
2

32Q̄
(1,1)
ea

∫ ∞
0 ε [Q(1)

ea (ε)]−1 exp(−ε/kTe) dε
.

The correction coefficient Cei in a strongly ionized plasma
with singly charged ions may be found as the ratio of the
diffusion coefficient Dea evaluated in the first approximation
of the Chapman–Enskog method to that obtained by means of
the Spitzer and Härm formula and equals 0.506.

The thermal diffusion coefficients C
(h)

i and C
(h)
a are

governed by ion–atom collisions. Once again taking into
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account that the frequency of collisions of singly charged ions
with atoms of a parent gas depends on the collision energy
rather weakly, we set C

(h)

i = C
(h)
a = 0, i.e. assume that

transport equations (5) for the heavy particles do not contain
terms proportional to ∇Th. The coefficients C(e)

α are evaluated
by means of the interpolation expression (e.g. [65])

C(e)
e = 1

1 + P
Ctdei +

P

1 + P
Ctdea, C

(e)
i = −ne

ni

1

1 + P
Ctdei,

C(e)
a = −ne

na

P

1 + P
Ctdea, (48)

where Ctdei and Ctdea are the values of thermal diffusion
coefficient for electrons, C

(e)
e , in the limits of strongly and

partially ionized plasmas, respectively. The coefficient Ctdea

is evaluated by means of the expression

Ctdea =
∫ ∞

0 ε [Q(1)
ea (ε)]−1(ε/kTe − 5/2) exp(−ε/kTe) dε∫ ∞
0 ε [Q(1)

ea (ε)]−1 exp(−ε/kTe) dε
,

which follows from the Lorentzian formulae with the
Maxwellian electron energy distribution. The coefficient Ctdei

for plasmas with singly charged ions may be found by means
of the Spitzer and Härm formulae and equals 0.703.

The thermal diffusion part of the density of heat flux
transported by the electrons, he, is evaluated in terms of the
same coefficients that govern the thermal diffusion force for
electrons

A
(e)
i = 1

1 + P
Ctdei, A(e)

a = P

1 + P
Ctdea. (49)

The thermal conductivity of electrons is given by the
interpolation expression

κ−1
e = κ−1

ea + κ−1
ei . (50)

The thermal conductivity κea of electrons in the limiting case of
partially ionized plasma is obtained by means of the Lorentzian
formula with the Maxwellian electron energy distribution and
may be written as

κea = Cthermkne
nDea

Ceana
, (51)

where the coefficient Ctherm is

Ctherm =
∫ ∞

0 ε [Q(1)
ea (ε)]−1(ε/kTe − 5/2)2 exp(−ε/kTe) dε∫ ∞
0 ε [Q(1)

ea (ε)]−1 exp(−ε/kTe) dε

−C2
tdea. (52)

The thermal conductivity κei of the electrons in the limiting
case of strongly ionized plasma with singly charged ions may
be found by means of the Spitzer and Härm formulae:

κei = 3.20 knenDei/ni. (53)

The coefficients A
(h)
a and A

(h)

i determining the thermal
diffusion part of the heat flux transported by heavy particles,
being proportional to, respectively, C(h)

a and C
(h)

i , are set equal
to zero. In other words, the heat flux hhp is assumed to be
entirely due to heat conduction.

The thermal conductivity κhp of heavy particles is given
by the sum of contributions due to atoms and ions

κhp = κa + κi, (54)

each contribution being evaluated using interpolation
expressions analogous to equation (50) (e.g. [66]):

κa = 75k

64Q̄
(2,2)
aa

(
πkTh

ma

)1/2
(

1 +
niQ̄

(2,2)

ia

naQ̄
(2,2)
aa

)−1

, (55)

κi = 75kni

64Q̄
(2,2)

ia na

(
πkTh

ma

)1/2
(

1 +
niQ̄

(2,2)

ii

naQ̄
(2,2)

ia

)−1

. (56)

The average cross sections Q̄
(2,2)
aa and Q̄

(2,2)

ia for argon are
evaluated by means of formulae obtained by fitting the data
[61]: Q̄

(2,2)
aa = 1.12 × 10−18T −0.2

h , Q̄
(2,2)

ia = 3.6 × 10−18T −0.3
h

(Th is in K and Q̄
(2,2)

ia in m2). The average cross section
Q̄

(2,2)
aa for mercury is estimated on the basis of data on the

thermal conductivity of LTE mercury plasma given in [67].
In the temperature range 3000–5000 K, where κe, κi � κa

and niQ̄
(2,2)

ia � naQ̄
(2,2)
aa , these data have been analysed by

means of equation (55) without the third multiplier on the right-
hand side and it was found that Q̄

(2,2)
aa for mercury exceeds

the corresponding cross section for argon by a factor which
is approximately constant and equal to 1.15, i.e. Q̄

(2,2)
aa =

1.29×10−18T −0.2
h for mercury. The latter formula is also used

in this work outside the above-mentioned temperature range.
The ratio of the resonant charge exchange cross sections [5]
for mercury and argon is virtually independent of the collision
energy and approximately equals 2.9. It is therefore assumed
that Q̄(2,2)

ia for mercury exceeds the corresponding cross section
for argon by a factor of 2.9, i.e. Q̄

(2,2)

ia = 1.04 × 10−17T −0.3
h

for mercury. The average cross section Q̄
(2,2)

ii is evaluated by
means of the expression [66]

Q̄
(2,2)

ii = e4 ln �

36πε2
0(kTh)2

. (57)

The ionization rate constant ki is represented as the sum
of rate constants of direct and stepwise ionization: ki =
kdir + kstepβ. Expressions for kdir and kstep are taken from
[5]. The factor β = ne/(ne + n

(0)
e ) approximately accounts

for the decrease in the rate of stepwise ionization due to
radiation escape. The latter comes into play at ne of the order
of n

(0)
e or below, where n

(0)
e is estimated using the balance

equation for the first excited state: at ne = n
(0)
e the rate

of de-excitation of this state by electron impact equals the
rate of de-excitation due to radiation escape evaluated taking
into account the radiation trapping in a plasma of radius of
about 1 mm. n

(0)
e estimated in such a way equals 1021 m−3

for argon and 1019 m−3 for mercury. The recombination
rate coefficient is evaluated by means of the formula kr =
(kdir + kstep)(n

2
e/na)S, where (n2

e/na)S is the ratio n2
e/na

evaluated under the assumption of ionization equilibrium,
i.e. by means of the Saha equation, and represents a
function of Te.

At sufficiently high ne, the rate of radiation energy losses,
wrad, is close to its value in LTE plasma. The radiation
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energy losses in LTE atmospheric-pressure plasma for a wide
temperature range have been calculated taking into account
both continuum and line radiation in [68–70] for Ar and
in [67, 71] for Hg. These data are fitted by means of the
following formulae, which take into account the fact that
the net emission coefficient is approximately proportional
to the plasma pressure p (e.g. [29, 67, 70]) and apply to
argon and, respectively, mercury plasmas of a radius of
about 1 mm:

wrad = 2.6 × 1025 p

T 2.52
e

exp

(
−1.69 × 105

Te

)
, (58)

wrad = 6.3 × 1022 p

T 2.32
e

exp

(
−8.32 × 104

Te

)
. (59)

Here p is in bar, Te in K and wrad in W m−3.
Since the radiation losses come into play in an outer

section of the near-cathode region where ne is high, the above
formulae are, in principle, sufficient for the purposes of this
work. However, these formulae would give unrealistic results
if applied to an inner section of the near-cathode region, where
Te can be very high while ne low. At low ne the radiation
losses are due to radiation of excited atomic states. A simple
estimate may be obtained by assuming that the de-excitation
of the radiating atomic state due to radiation escape prevails
over the de-excitation in collisions with electrons. Then the
radiation losses are governed by the rate of excitation of
these states by electron impact and may be approximately
written as

wrad = k1nane �E, (60)

where �E is the excitation energy of the first excited atomic
state and k1 is the effective rate constant of excitation of this
state which is evaluated as described in [5]. Note that this
expression is accurate if ne � n

(0)
e and represents an upper

estimate otherwise. An approximate procedure of evaluation
of wrad at an arbitrary ne consists of a linear interpolation
between equation (60) and equation (58) or (59) over the
parameter (ne/n

(0)
e )2.

Appendix B. Method of numerical solution

The governing differential equations are transformed to a
system of four ordinary differential equations of second
order. This is done as follows. Eliminating Ja

from equation (5) for ions and electrons by means of
equation (19) and Ji by means of expression Ji = Je + j/e,
one gets

[(na + ni)Ria+(ne − ni)Rei]Je−[(na + ni)Ria + neRei]

(
−j

e

)

= −(nikTh)
′ + nieE − C

(h)

i nikT ′
h − C

(e)

i nikT ′
e , (61)

[(na + ne)Rea + (ni − ne)Rei]Je − ne(Rea − Rei)

(
−j

e

)

= −kTen
′
e − neeE − C̃(e)

e nekT ′
e , (62)

where a prime denotes differentiation with respect to x, Rαβ =
kTαβCαβ/nDαβ , and C̃

(e)
e = C

(e)
e + 1. Solving equation (62)

for Je, substituting the result into equation (1) for electrons and
eliminating ni by means of equation (17), one gets
B

−kTen
′
e − neeE−C̃

(e)
e nekT ′

e +ne(Rea−Rei)

(
−j

e

)
(na + ne)Rea + ε0

Be
(BE)′Rei




′

= B

(
kinane−krn

3
e − ε0

Be
krn

2
e(BE)′

)
. (63)

Equation (63) represents a second-order differential equation
for ne.

Combining equations (61) and (62) in order to eliminate
Je and then eliminating ni by means of equation (17), one gets[
ε0kTh

Be
(BE)′ − ε0

B2

(BE)2

2
+ nekTh

]′

= 2ε0E
2

rc

√
B

− (C
(h)

i kT ′
h + C

(e)

i kT ′
e )

ε0

Be
(BE)′

+

[
Ria

ε0

Be
(BE)′ − ne(X1Rea − Ria − X2Rei)

+ naRia

] (
−j

e

)
+ X1kTen

′
e + X2neeE + X1C̃

(e)
e nekT ′

e

−(C
(h)

i kT ′
h + C

(e)

i kT ′
e )ne, (64)

where

X1 =

[(
na + ne +

ε0

Be
(BE)′

)
Ria − ε0

Be
(BE)′Rei

]
[
(na + ne)Rea +

ε0

Be
(BE)′Rei

] ,

X2 = X1 + 1. (65)

Equation (64) represents a second-order differential equation
for E. Note that the terms of this equation that involve E are
small in the major part of the near-cathode plasma (outside the
space-charge sheath); the only exception is the term X2neeE,
and it is this term that makes equation (64) appropriate for
numerical determination of the electric field in a plasma with a
high degree of quasi-neutrality [72], in contrast to the original
Poisson equation (17).

Second-order differential equations for Te and Th

are obtained substituting equations (15) and (16) into
equations (10) and (11).

An iterative algorithm is used to solve the formulated
system of equations. The equations are linearized with the use
of Newton’s method and at each step of the iteration process
are solved jointly by means of the Petukhov method [73]
(which is a method of numerical solution of a boundary-
value problem for a linear ordinary differential equation
of the second or third order or for a partial differential
equation of the parabolic type, based on a finite-difference
scheme of the fourth order of accuracy) generalized for the

24



J. Phys. D: Appl. Phys. 41 (2008) 245201 N A Almeida et al

case of a system of equations. All regions of fast variation
of the solution must be resolved to ensure convergence of
the iterations, which requires a numerical grid with a variable
step.
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[55] Kühn G and Kock M 2006 J. Phys. D: Appl. Phys. 39 2401–14
[56] Redwitz M, Langenscheidt O and Mentel J 2005 J. Phys. D:

Appl. Phys. 38 3143–54
[57] Kuhn G and Kock M 2007 Phys. Rev. E 75 016406
[58] Mitrofanov N K and Shkol’nik S M 2007 Tech. Phys.

52 711–20
[59] Dabringhausen L, Nandelstädt D, Luhmann J and Mentel J
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[60] Nandelstädt D, Redwitz M, Dabringhausen L, Luhmann J,

Lichtenberg S and Mentel J 2002 J. Phys. D: Appl. Phys.
35 1639–47

[61] Devoto R S 1973 Phys. Fluids 16 616–23
[62] Itikawa Y (ed) 2000 Photon and Electron Interactions with

Atoms, Molecules and Ions. Subvolume A Interactions of
Photons and Electrons with Atoms (Numerical Data and
Functional Relationships in Science and Technology vol
17A) (Berlin: Springer)

[63] Phelps A V Ftp://jila.colorado.edu/collision data/eletrans.txt
Last revision May 21, 2005

[64] McEachran R P and Elford M T 2003 J. Phys. B: At. Mol. Opt.
Phys. 36 427–41

[65] Rozhansky V A and Tsendin L D 1988 Collisional Transport
in a Partially Ionized Plasma (Moscow: Energoatomizdat)
(in Russian)

[66] Liu W S, Whitten B T and Glass I I 1978 J. Fluid Mech.
87 609–40

[67] Zollweg R J 1978 J. Appl. Phys. 49 1077–91
[68] Kovitya P and Lowke J J 1985 J. Phys. D: Appl. Phys.

18 53–70
[69] Benoy D A, van der Mullen J A M and Schram D C 1993

J. Phys. D: Appl. Phys. 26 1408–13

25

http://dx.doi.org/10.1088/0963-0252/3/4/014
http://dx.doi.org/10.1088/0022-3727/28/2/010
http://dx.doi.org/10.1088/0022-3727/28/9/015
http://dx.doi.org/10.1088/0022-3727/29/1/021
http://dx.doi.org/10.1103/PhysRevE.57.2230
http://dx.doi.org/10.1088/0022-3727/33/8/312
http://dx.doi.org/10.1088/0022-3727/34/8/310
http://dx.doi.org/10.1063/1.1387473
http://dx.doi.org/10.1088/0022-3727/35/14/313
http://dx.doi.org/10.1088/0022-3727/37/22/008
http://dx.doi.org/10.1088/0022-3727/38/17/S13
http://dx.doi.org/10.1088/0022-3727/38/19/009
http://dx.doi.org/10.1088/0022-3727/39/13/017
http://dx.doi.org/10.1088/0022-3727/39/14/014
http://dx.doi.org/10.1088/0022-3727/41/14/144001
http://dx.doi.org/10.1088/0022-3727/31/20/017
http://dx.doi.org/10.1088/0022-3727/32/3/014
http://dx.doi.org/10.1109/27.467997
http://dx.doi.org/10.1088/0022-3727/38/19/R01
http://dx.doi.org/10.1016/S0021-8928(03)90021-9
http://dx.doi.org/10.1063/1.1659268
http://dx.doi.org/10.1088/0022-3727/38/9/R01
http://dx.doi.org/10.1088/0022-3727/36/23/020
http://dx.doi.org/10.1063/1.1710971
http://www.arc_cathode.uma.pt
http://dx.doi.org/10.1088/0022-3727/38/22/011
http://dx.doi.org/10.1088/0022-3727/36/6/301
http://dx.doi.org/10.1088/0022-3727/40/7/024
http://dx.doi.org/10.1088/0022-3727/33/14/308
http://dx.doi.org/10.1063/1.430906
http://dx.doi.org/10.1103/PhysRev.90.730
http://dx.doi.org/10.1088/0022-3727/35/14/314
http://dx.doi.org/10.1103/PhysRevE.68.056407
http://dx.doi.org/10.1109/27.199571
http://dx.doi.org/10.1088/0022-3727/26/8/011
http://dx.doi.org/10.1088/0022-3727/27/3/014
http://dx.doi.org/10.1088/0022-3727/27/3/019
http://dx.doi.org/10.1088/0022-3727/28/12/016
http://dx.doi.org/10.1088/0022-3727/29/10/015
http://dx.doi.org/10.1088/0022-3727/30/20/015
http://dx.doi.org/10.1088/0022-3727/37/13/004
http://dx.doi.org/10.1088/0022-3727/39/11/014
http://dx.doi.org/10.1088/0022-3727/38/17/S15
http://dx.doi.org/10.1103/PhysRevE.75.016406
http://dx.doi.org/10.1134/S1063784207060060
http://dx.doi.org/10.1088/0022-3727/35/14/302
http://dx.doi.org/10.1088/0022-3727/35/14/304
http://dx.doi.org/10.1063/1.1694396
Ftp://jila.colorado.edu/collision_data/eletrans.txt
http://dx.doi.org/10.1088/0953-4075/36/3/303
http://dx.doi.org/10.1017/S0022112078001792
http://dx.doi.org/10.1063/1.325036
http://dx.doi.org/10.1088/0022-3727/18/1/009
http://dx.doi.org/10.1088/0022-3727/26/9/010


J. Phys. D: Appl. Phys. 41 (2008) 245201 N A Almeida et al

[70] Gleizes A, Gonzalez J J, Liani B and Raynal G 1993 J. Phys.
D: Appl. Phys. 26 1921–7

[71] Paul K C, Takemura T, Matsuno H, Hiramoto T, Dawson F,
Gonzalez J J, Gleizes A, Zissis G, Erraki A and Lavers J D
2004 IEEE Trans. Plasma Sci. 32 118–26

[72] Benilov M S and Tirskii G A 1979 J. Appl. Math. Mech.
43 309–26

[73] Petukhov I V 1964 Numerical Calculation of Two-Dimensional
Flows in a Boundary Layer (Moscow: Nauka)
pp 304–25

26

http://dx.doi.org/10.1088/0022-3727/26/11/013
http://dx.doi.org/10.1109/TPS.2004.823902
http://dx.doi.org/10.1016/0021-8928(79)90012-1

	1. Introduction
	2. The model
	2.1. The system of equations
	2.2. Boundary conditions

	3. Results and discussion
	3.1. Distributions of plasma parameters in the near-cathode region and current--voltage characteristics (CVCs)
	3.2. Energy balance of the near-cathode plasma
	3.3. Limitations of the model
	3.4. Validity of simplified models

	4. Comparison with the experiment
	5. Conclusions
	 Acknowledgments
	Appendix A. Transport, kinetic and radiation coefficients
	Appendix B. Method of numerical solution
	 References

