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Physics of the intermediate layer between a plasma and a collisionless
sheath and mathematical meaning of the Bohm criterion
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Departamento de Fı́sica, CCCEE, Universidade da Madeira Largo do Municı́pio, 9000 Funchal, Portugal

(Received 9 May 2012; accepted 11 June 2012; published online 20 July 2012)

A transformation of the ion momentum equation simplifies a mathematical description of the

transition layer between a quasi-neutral plasma and a collisionless sheath and clearly reveals the

physics involved. Balance of forces acting on the ion fluid is delicate in the vicinity of the sonic

point and weak effects come into play. For this reason, the passage of the ion fluid through the

sonic point, which occurs in the transition layer, is governed not only by inertia and electrostatic

force but also by space charge and ion-atom collisions and/or ionization. Occurrence of different

scenarios of asymptotic matching in the plasma-sheath transition is analyzed by means of simple

mathematical examples, asymptotic estimates, and numerical calculations. In the case of a

collisionless sheath, the ion speed distribution plotted on the logarithmic scale reveals a plateau in

the intermediate region between the sheath and the presheath. The value corresponding to this

plateau has the meaning of speed with which ions leave the presheath and enter the sheath; the

Bohm speed. The plateau is pronounced reasonably well provided that the ratio of the Debye

length to the ion mean free path is of the order of 10�3 or smaller. There is no such plateau if the

sheath is collisional and hence no sense in talking of a speed with which ions enter the sheath.
VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4737080]

I. INTRODUCTION

The topic of plasma-sheath transition near a negative

surface is of central importance for the theory and modelling

of bounded plasmas. There has been considerable interest in

the literature during the last decades towards different

aspects of the plasma-sheath transition, including the Bohm

criterion; see, e.g., reviews.1–5

The concepts of a quasi-neutral plasma and a space-

charge sheath are only meaningful if the characteristic Debye

length kD is small. Therefore, elucidating features of the

plasma-sheath transition originating in the inequality

kD � L, where L is a length scale characterizing the pre-

sheath, i.e., a quasi-neutral plasma region adjacent to the

sheath, is necessary for understanding this transition. Conse-

quently, an appropriate means for investigation of plasma-

sheath transition is an asymptotic approach treating kD=L as

a small parameter and employing the method of matched as-

ymptotic expansions (e.g., Refs. 6–11), which is a standard

tool for solving multi-scale problems and represents a

powerful alternative to intuitive approaches.

In the case of a collisionless sheath, the method of

matched asymptotic expansions was applied to the plasma-

sheath transition in Ref. 12; a refined analysis was given in

Ref. 13. Since then, many works have been published on as-

ymptotic treatment of different aspects of this transition,

e.g., Refs. 2–5. The asymptotic structure of the plasma-

sheath transition includes three zones, each described by a

separate asymptotic expansion: a quasi-neutral plasma, a

space-charge sheath, and an intermediate transition layer.

(Note that the latter was termed the first transitional layer in

Ref. 12, the transonic layer in Ref. 14, and the intermediate

region in Ref. 13.) The asymptotic expansions describing the

plasma and the sheath have a clear physical meaning and

represent an adequate mathematical description of the well-

known physical concepts going back to Langmuir. On the

contrary, the transition layer has appeared in the course of

analyses12,13 as a purely mathematical concept: a direct

matching of the plasma and sheath expansions is impossible

beyond the first approximation.

The topic of transition layer has been revisited in subse-

quent works, e.g., Refs. 5, 15–17, however a clear physical

interpretation of the asymptotic solution is still lacking. This

renders the theory of plasma-sheath transition not quite com-

plete and has contributed to a number of controversies. Some

researchers even believe that the transition layer is not distin-

guished by special physical processes but rather represents a

mathematical tool to bridge the sheath edge singularity,

which amounts to the transition layer being little more than

an artefact produced by the method of matched asymptotic

expansions.

In this work, the question of physics of the transition

layer is reconsidered on the following grounds. The ion ve-

locity vi, ion and electron densities ni and ne, and potential

u remain to the first approximation constant in the transi-

tion layer. Therefore, the transition layer must be described

by means of the second approximation, i.e., by two-term as-

ymptotic expansions: the expansion of each of the quanti-

ties vi, ni, ne, and u includes a constant first-order term and

a second-order term describing the variation of this quantity

in the transition layer. Unfortunately, equations governing

these variations cannot be derived in a straightforward way

by means of considering only the second approximation, so

three-term expansions have been used.13 [Derivations given

in other works which do not employ formal asymptotic

expansions involve approximations similar to using
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three-term expansions: derivation15 relies on equations

comprising terms of both second and third order (Eqs. (29)

and (30)); derivations12,16,17 use three-term expansions in

powers of potential of the ion and electron densities in the

Poisson equation.] It is the use of three-term expansions for

derivation of equations governing the second term that

obscures the physics. However, the necessity to use three-

term expansions is not an inherent feature of the considered

problem and may be eliminated by properly transforming

the ion momentum equation.18 One can hope that such

approach will distinctly reveal the physics involved, as the

method of matched asymptotic expansions always does.

Another question considered in this work is as follows.

There are many papers employing different definitions of a

collisionally modified Bohm criterion,19 being apparently

the first and most cited example and20–25 the most recent

ones. It is striking that none of these definitions has gained

wide recognition. This can only be explained by all these

definitions being arbitrary. Then a question arises: If there is

a unique Bohm criterion for a collisionless sheath, why can-

not there be a unique Bohm criterion for collisional sheaths?

One can mention in this connection the work,22 which was

aimed at a nonarbitrary definition of a collisionally modified

Bohm criterion, and the subsequent discussion;26,27 other rel-

evant references are works,15,28 which are specifically con-

cerned with the effect of collisions on the plasma-sheath

transition. One of the factors feeding the confusion is the

uncertainty with identification of the Bohm criterion in

results of numerical solution of a full problem, i.e., of a prob-

lem which comprises the Poisson equation and therefore

does not involve an a priori sub-division of the calculation

domain into the quasi-neutral plasma and a space-charge

sheath; for example, the conclusion of Ref. 22 was that there

are no peculiarities at the Bohm speed in distributions of pa-

rameters, including in cases where the sheath is collisionless.

Of course, the bottom question is: What is the mathe-

matical meaning of the Bohm criterion? A frequently

encountered idea is that the Bohm criterion is related to the

sheath edge singularity. A different point of view is sug-

gested by the character of asymptotic solutions:12,13 the

Bohm criterion represents a manifestation of one of general

scenarios of asymptotic matching, namely, matching on a

constant. In this work, this question is considered with the

use of simple mathematical examples, asymptotic estimates,

and results of numerical solution of a full problem.

The outline of the paper is as follows. Governing equa-

tions are briefly introduced in Sec. II. Section III is con-

cerned with elucidating the physics of transition layer

between a plasma and a collisionless sheath. The mathemati-

cal meaning of the Bohm criterion is analyzed in Sec. IV.

Conclusions are summarized in Sec. V. In the Appendix, the

structure of the plasma-sheath transition for collisionless to

moderately collisional to collision-dominated sheaths is ana-

lyzed in terms of simple asymptotic estimates.

II. EQUATIONS

Let us consider a transition from a weakly ionized

plasma with cold ions to an absorbing surface under a nega-

tive potential. The plasma is planar with ion-atom collisions

and/or ionization. Governing equations are written in the

fluid approximation and are well-known; they include the

ion conservation equation written with account of ionization,

the ion momentum equation written with account of the fric-

tion force due to collisions, the equilibrium equation for the

electrons, and the Poisson equation,

d

dx
ðniviÞ ¼ kinane; (1)

d

dx
ðminiv

2
i Þ ¼ eniE� ni�imivi; (2)

d

dx
ðnekTeÞ þ eneE ¼ 0; (3)

e0

dE

dx
¼ eðni � neÞ; (4)

where ki is the ionization rate coefficient, �i ¼ �iðjvijÞ is the

frequency of momentum transfer from an ion to neutral

atoms, and all the other designations are the usual ones. The

x-axis is directed from the surface into the plasma, so vi < 0

and E < 0.

The above equations may be characterized by a number

of length scales: a Debye length kD, a characteristic mean

free path of ions in the gas of atoms, ks, and an ionization

length li. A further length scale is the width D of the plasma

slab. This work is concerned with the situation where

kD � li;D, so the discharge gap may be subdivided into the

region of quasi-neutral plasma and the sheath, the ionization

in the sheath being insignificant. Three cases will be treated:

the sheath is collisionless while collisions and/or ionization

play a role in the plasma, kD � minðks; liÞ.D; the sheath is

moderately collisional, kD � ks � li;D; the sheath is

collision-dominated, ks � kD � li;D.

We assume that lengths kD, ks, and li are estimated for

conditions characteristic of the sheath. In the case of a colli-

sionless sheath, it is convenient to use more specific defini-

tions: ks and li are estimated in terms of the Bohm speed,

ks ¼ vs=�iðvsÞ, li ¼ vs=kina, and kD is estimated in terms of

the corresponding charge particle density ns ¼ ji=evs (here

vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTe=mi

p
is the Bohm speed or, equivalently, the speed

of ion sound wave and ji is the density of ion current to the

surface). It is convenient also to introduce the length

l ¼ ðk�1
s þ 2l�1

i Þ
�1

, which is of the order of the smaller of

the lengths ks and li.

III. PHYSICS OF THE TRANSITION LAYER BETWEEN
A PLASMA AND A COLLISIONLESS SHEATH

A. Transforming ion momentum equation

An equivalent form of the ion momentum equation (2)

can be obtained with the use of Eq. (1),

minivi
dvi

dx
¼ eniE� ðni�i þ kinaneÞmivi: (5)

Another equivalent form of this equation may be derived

similarly to the way in which it was done in the study of a
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transition from a collision-dominated plasma to a collision-

free space-charge sheath with account of variable ion tem-

perature.18 Eliminating from Eq. (3) ne with the use of Eq.

(4) and then eliminating from the resulting relationship

dni=dx with the use of Eq. (1), one can obtain

eniE ¼
nikTe

vi

dvi

dx
þ e0

kTe

e

d2E

dx2
þ E

dE

dx

� �
� kTe

vi
kinane: (6)

Substituting this expression for the electrostatic force term of

Eq. (5), one obtains

vi

v2
s

dvi

dx
� 1

vi

dvi

dx
¼ e0

eni

d2E

dx2
þ eE

kTe

dE

dx

� �

þ 1

vs
��i

vi

vs
� kina

ne

ni

vi

vs
þ vs

vi

� �� �
: (7)

B. Asymptotic analysis

A treatment of the considered problem in the case of a

collisionless sheath, kD � l, by means of the method of

matched asymptotic expansions in the small parameter kD=l
was given in Refs. 12 and 13. The procedure of the method

of matched asymptotic expansions includes two steps. First,

a reasonable guess should be made of the asymptotic struc-

ture of the solution, i.e., relevant asymptotic zones and scal-

ings of unknown variables in these zones. At the second

step, the guess is formalized: formal asymptotic expansions

are written and differential equations describing each zone

are derived and solved. The guess made at the first step is

correct if equations in each zone are solvable and solutions

in each pair of adjacent zones can be asymptotically

matched; otherwise the guess must be reconsidered.

The first step is performed by means of asymptotic esti-

mates. These estimates can be made in different ways, e.g.,

with the use of considerations stemming from matching as in

Ref. 13. Here, asymptotic estimates are performed with the

use of Eq. (7). Let us designate by d a local scale of variation

of parameters and assume that the local electric field E is of

the order of kTe=ed, vi of the order of vs, and ni and ne of the

order of ns. The lhs of Eq. (7) and the two terms on the rhs

are of the order, respectively, d�1, k2
D=d

3, l�1. The latter esti-

mates suggest two scalings: d ¼ l and d ¼ kD. On the scale

d ¼ l, the first term on the rhs of Eq. (7) is of the order of

ðkD=lÞ2 relative to the other terms, i.e., negligible: the quasi-

neutral plasma, i.e., the presheath. On the scale d ¼ kD, the

second term on the rhs of Eq. (7) is of the order of kD=l rela-

tive to the other terms, i.e., negligible: the space-charge

sheath without collisions and ionization.

Since the density of the space charge near a negative

surface is positive and increases in the direction to the sur-

face, dE=dx > 0 and d2E=dx2 < 0. Hence, the first term on

the rhs of Eq. (7) is negative. The second term is obviously

positive. It follows that the rhs of Eq. (7) is positive in the

presheath, where the second term is dominating, and nega-

tive in the sheath, where the first term is dominating. Since

the ions are accelerated in the direction to the surface, i.e.,

dvi=dx > 0, one concludes that the ion motion is subsonic,

jvij < vs, in the presheath and supersonic, jvij > vs, in the

sheath.

Thus, the second term on the rhs of Eq. (7) is dominat-

ing for jvij < vs and the first term is dominating for

jvij > vs. Therefore, there should be an intermediate transi-

tion layer, i.e., a layer where jvij is close to vs and where

the two terms on the rhs of Eq. (7) are comparable. Let us

represent jvij ¼ vs þ ui, juij � vs in this layer. Relative var-

iations of the ion and electron densities in this layer are of

the same order as the relative variation of the ion speed,

i.e., one can represent ni ¼ ns þ ni1, ne ¼ ns þ ne1, where

ni1 and ne1 are of the order nsui=vs. Substituting the above

two-term expansion into Eq. (3) and dropping small terms,

one obtains a simplified form of this equation in the transi-

tion layer,

kTe
dne1

dx
þ ensE ¼ 0; (8)

and it follows that E is of the order of ui

vs

kTe

ed . The simplified

form of Eq. (7) is

2ui

v2
s

dui

dx
¼ e0

ens

d2E

dx2
þ 1

l
: (9)

The term on the lhs of Eq. (9) is of the order u2
i =v

2
s d, the

terms on the rhs are of the orders of ui

vs

k2
D

d3 and 1/l, respectively.

Assuming that all the three terms are comparable, one finds

that d ¼ k4=5
D l1=5 and ui=vs is of the order ðkD=lÞ2=5

. The elec-

tric field is of the order of kTe=ek2=5
D l3=5.

It should be stressed that each of the terms on the lhs of

Eq. (7) is of the order of k�2=5
D l�3=5 in the transition layer.

The terms on the rhs of Eq. (7) are of the order of 1/l, i.e.,

much smaller. However, the terms on the lhs virtually cancel

and their difference is of the order of 1/l, and that is why the

terms on the rhs of Eq. (7) are retained, albeit in a simplified

form, in Eq. (9). It is because of this cancellation that the

term on the lhs of Eq. (9) is nonlinear; a situation not typical

for approximations of the second and subsequent orders in

the perturbation theory.

The simplified form of Eqs. (1), (2), and (4) in the transi-

tion layer is

vs
dni1

dx
þ ns

dui

dx
¼ 0; mivs vs

dni1

dx
þ 2ns

dui

dx

� �
¼ ensE;

ni1 ¼ ne1: (10)

With the use of Eqs. (10), one can eliminate E from

Eq. (9) and obtain an equation involving only ui,

2ui

v2
s

dui

dx
¼ k2

D

vs

d3ui

dx3
þ 1

l
: (11)

For the following, we need the asymptotic behavior of func-

tion uiðxÞ for small and large x=d. Assuming that ui

decreases from positive values for small x=d to negative

values for large x=d, one readily finds from Eq. (11) that

ui � 6vsðkD=xÞ2 and ui � �vs

ffiffiffiffiffiffi
x=l

p
, respectively.
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C. Discussion

The asymptotic structure derived above with the use of

Eq. (7) is, of course, the same as that of works,12,13 and so is

Eq. (11). There is, however, the following methodological

difference. Equations (8) and (10), which represent the sim-

plified form of the original equations (1)–(4) in the transition

layer, are linearly dependent. Hence, one more equation is

needed. The lacking equation, Eq. (11), was derived in Ref.

13 with the use of a three-term expansion. In the above anal-

ysis, Eq. (11) was derived from Eq. (7) without resorting to a

three-term expansion.

In addition to simplifying the analysis, Eq. (7) clearly

reveals the physics of the transition layer. The ion fluid is

accelerated by the electrostatic force and is retarded by the

friction force originating in elastic collisions ion-atom and/or

ionization; cf. Eq. (5). The electrostatic force may be repre-

sented as the sum of three components as shown by Eq. (6).

Two of the components are associated with, respectively,

deviations from quasi-neutrality and the ionization; the sec-

ond and third terms on the rhs of Eq. (6). The other compo-

nent is present even if the plasma is quasi-neutral and the

ionization frozen; the first term on the rhs of Eq. (6).

The first term on the lhs of Eq. (7) represents the ion

inertia force; cf. the lhs of Eq. (5). The second term on the

lhs of Eq. (7) represents the quasi-neutral no-ionization com-

ponent of the electrostatic force. The first term on the rhs

represents the component of the electrostatic force associated

with space charge. The second term on the rhs represents the

ionization-associated component of the electrostatic force

combined with the friction force. In the presheath, the second

term on the rhs of Eq. (7) is dominating, i.e., the space-

charge component of the electrostatic force is insignificant

compared to the ionization component and the friction force.

It is the other way round in the sheath. In the transition layer,

the terms on the rhs of Eq. (7) are of the same order, i.e., the

space-charge and ionization components of the electrostatic

force and the friction force are comparable.

It should be emphasized that the terms on the rhs of Eq.

(7) in the transition layer are much smaller than each term on

the lhs. In other words, the inertia and the electrostatic force

are dominating in the transition layer and the main contribu-

tion to the electrostatic force is given by the quasi-neutral

no-ionization component. However, the inertia force and the

quasi-neutral no-ionization component of the electrostatic

force virtually cancel and their difference is of the same

order that the space-charge and ionization components of the

electrostatic force and the friction force. For this reason, Eq.

(9), which represents the limiting form of Eq. (7) in the tran-

sition layer, accounts not only for the inertia force and the

quasi-neutral no-ionization component of the electrostatic

force but also for separation of charges and ion-atom colli-

sions and/or ionization.

In other words, the transition layer, which is where the

passage of the ion fluid through the sonic point jvij ¼ vs

occurs, is positioned in-between the plasma and the sheath

and ion-atom collisions and/or ionization are no longer sig-

nificant here while separation of charges is not significant

yet. However, the balance of forces acting over the ion fluid

is delicate in the vicinity of the sonic point and the above-

mentioned weak effects (ion-atom collisions and/or ioniza-

tion and separation of charges) also play a role.

In view of the above, it seems that the most adequate

term for this layer is the “transonic layer,” suggested in Ref.

14.

IV. MATHEMATICAL MEANING OF THE BOHM
CRITERION

The analysis of Sec. III applies to the case of a collision-

less sheath without ionization, the aim being to elucidate the

physical meaning of the second approximation describing

the transition layer. This section is concerned with a compar-

ative analysis of the character of the first approximation in a

more general case of a collisionless to moderately collisional

to collision-dominated sheath.

A. Mathematical examples

Let us consider simple mathematical examples illustrat-

ing scenarios of asymptotic matching relevant for plasma-

sheath transition. The first example is the function,

wðnÞ ¼ 1þ e
1þ eþ n

þ 2exp � n
e

� �
; (12)

where the independent variable n varies in the domain n � 0

and e is a small parameter. This function is plotted in Figure

1(a) for several values of e. For each e, there are two regions

of variation of function wðnÞ: n of the order unity and n of

the order e; the so-called outer region and the inner region or

boundary layer. Approximate expressions describing func-

tion wðnÞ in the outer and inner regions are, respectively,

wðoÞðnÞ ¼ 1

1þ n
; wðiÞðgÞ ¼ 1þ 2e�g; (13)

where g ¼ n=e. The first expression is obtained from Eq.

(12) by setting e! 0, the second one is obtained by elimi-

nating from Eq. (12) n in terms of g and then setting e! 0.

The outer and inner approximations must coincide in the

intermediate region e� n� 1; the so-called asymptotic

matching. Indeed, setting n� 1 in the first expression in Eq.

(13) and g� 1 in the second expression, one finds

wðoÞ � wðiÞ � 1.

As the second example, let us consider the function

wðnÞ ¼ 1þ n
eþ n

þ 1

e
exp � n

e

� �
: (14)

This function is plotted in Figure 1(b). The outer and

inner approximations in this example are, respectively,

wðoÞðnÞ ¼ 1þ 1

n
; wðiÞðgÞ ¼ 1

e
1

1þ g
þ e�g

� �
: (15)

In the intermediate region e� n� 1 the outer and

inner approximations read wðoÞ � 1=n, wðiÞ � 1=eg and coin-

cide as they should, although they are not constant, in con-

trast to the preceding example.
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A major difference between these two examples is that

while function (12) is of the same order of magnitude in the

outer and inner regions, values of function (14) in the outer

region are asymptotically small compared to those in the

inner region. Indeed, functions wðoÞ and wðiÞ given by Eq.

(13) are of the same order of magnitude (unity), while func-

tion wðoÞ given by Eq. (15), being of the order unity, is much

smaller than wðiÞ given by the same equation, which is of the

order 1=e. As a consequence, asymptotic matching occurs in

essentially different ways: on a constant (equal to 1) in the

first example and on an algebraic function 1=n, which

describes the increase of w from order unity in the outer

region to order 1=e in the inner region, in the second exam-

ple. The latter difference is clearly seen in Figures 1(a) and

1(b): while wðnÞ is virtually constant (and equal to 1) in the

range e� n� 1 for small e in Figure 1(a), in Figure 1(b)

wðnÞ is variable in the range e� n� 1 and cannot be char-

acterized by a number.

The third example is

wðnÞ ¼ 1þ e

1þ eþ
ffiffiffi
n
p þ 6e2

3e2 þ n2
: (16)

This function is plotted in Figure 1(c). The outer and

inner approximations in this example are, respectively,

wðoÞðnÞ ¼ 1

1þ
ffiffiffi
n
p ; wðiÞðgÞ ¼ 1þ 6

3þ g2
: (17)

Asymptotic matching occurs on a constant as in the first

example, however the plateau in the range e� n� 1 in

Figure 1(c) appears for smaller values of e and is less pro-

nounced than in Figure 1(a). One can assume for definiteness

that a plateau is present if the reduction of function wðnÞ,
say, from 1 to 0.7 requires an increase in n by a factor of at

least 10. In other words, if n1 and n2 are the roots of equa-

tions wðn1Þ ¼ 1 and wðn2Þ ¼ 0:7, then the plateau is present

provided that n2=n1 � 10. Values of these roots for relevant

e are given in Table I. One can see that the plateau appears

in the first example for e � 10�2 and in the third example for

e � 10�3.

The reason for this difference is that the outer and inner

approximations tend to 1 in the intermediate region in the

third example slower than in the first example. Indeed, the

difference wðoÞðnÞ � 1 for n! 0 decays proportionally to n
in the first example and to

ffiffiffi
n
p

in the third example; the dif-

ference wðiÞðgÞ � 1 for g!1 decays exponentially in the

first example and proportionally to g�2 in the third example.

As an illustration, also shown in Figure 1(c) is the function

(16) for e ¼ 10�2, 10�3, 10�4 to which
ffiffiffi
n
p

has been added.

One can see that the plateau for e ¼ 10�3, 10�4 indeed

becomes better pronounced.

B. Possible scenarios of plasma-sheath transition

Let us relate the above-described scenarios to the

plasma-sheath transition near a negative solid surface (wall

or cathode) in a weakly ionized plasma. To this end, we set

n ¼ x=L and e ¼ kD=L, where L¼ 1 in the case of a colli-

sionless sheath and L ¼ minðli;DÞ in the cases of a moder-

ately to strongly collisional sheath. In all the cases, e� 1.

In these designations, the outer region in the examples

of Sec. IV A corresponds to x of the order of L and represents

the presheath. The inner region corresponds to x of the order

of kD and represents the sheath. Figure 1 depicts two possible

scenarios of variation of ion speed in the plasma-sheath tran-

sition, with w representing jvij normalized by a characteristic

ion speed in the presheath. In the scenario depicted in Fig-

ures 1(a) and 1(c), the ion speed distribution reveals a
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FIG. 1. Mathematical examples illustrating different scenarios of plasma-sheath transition. (a) Function (12). (b) Function (14). (c) Solid lines: Function (16).

Dashed lines: Function (16) plus
ffiffiffi
n
p

.

TABLE I. Appearance of plateau.

Function e n1 n2 n2=n1 Plateau

(12) 10�1 0.241 0.502 2.08 Absent

(12) 10�2 0.0397 0.433 10.9 Present

(16) 10�2 0.0539 0.212 3.93 Absent

(16) 10�3 0.00830 0.184 22.2 Present

Numerics, p ¼ 0:1 Pa,

ji ¼ 0:42 Am�2 10�2 0.0898 0.281 3.13 Absent

Numerics, p ¼ 0:1 Pa,

ji ¼ 42 Am�2 10�3 0.0134 0.175 13.1 Present
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plateau in the intermediate region e� n� 1 (or, equiva-

lently, kD � x� L) and the smaller e is, the better this pla-

teau is pronounced. The value corresponding to this plateau

in the limit e! 0 has the meaning of a speed with which

ions leave the presheath and enter the sheath; the Bohm

speed. No such plateau exists in the scenario depicted in Fig-

ure 1(b), so the concept of a definite speed with which ions

enter the sheath and, therefore, the Bohm criterion are mean-

ingless. The first scenario occurs if the ion speed is of the

same order of magnitude in the sheath and presheath. The

second scenario occurs if the ion speed in the sheath is much

higher than that in the presheath (for the function (14), which

is shown in Figure 1(b), it is greater by a factor of the order

of e�1 ¼ L=kD).

Thus, a simple way to find out what scenario of plasma-

sheath transition occurs in a particular situation and whether

the Bohm criterion is meaningful is to compare ion velocities

in the sheath and the presheath. This can be done as follows.

If the negative solid surface being considered is an insulating

wall, then the voltage drop in the space-charge sheath is of

the order of kTe=e. If the surface being considered is a cath-

ode, then the voltage drop in the sheath may be much higher,

however only the outer part of the near-cathode sheath where

variation of potential is of the order of kTe=e is relevant as

far as the plasma-sheath transition is concerned. Therefore, it

is legitimate to assume that the sheath voltage is of the order

of kTe=e. The voltage drop in the presheath also is of the

order of kTe=e. In the case of a collisionless sheath, the ion

speed in the sheath is of the order of vs; since the presheath

is collisionless or moderately collisional (its thickness is of

the order of minðks; liÞ in this case), the ion speed in the pre-

sheath is of the same order vs. If the sheath is (moderately or

strongly) collisional, ks. kD � L ¼ minðli;DÞ, then the pre-

sheath is collision-dominated and the ion speed in the pre-

sheath is much smaller than that in the sheath; see

asymptotic estimates in the Appendix for details. It follows

that the scenario sketched in Figures 1(a) and 1(c) occurs

and the Bohm criterion is meaningful if the sheath is colli-

sionless; the scenario sketched in Figure 1(b) occurs and the

Bohm criterion is meaningless if the sheath is moderately to

strongly collisional.

It should be stressed that the above reasoning, while

being simple, is not simplistic: the fact that a function having

the same order of magnitude in adjacent asymptotic zones is

to the first approximation constant on intermediate length

scales represents the bottom mathematical meaning of the

Bohm criterion.

Asymptotic estimates of the plasma-sheath transition for

collisionless to moderately collisional to collision-dominated

sheaths are given in the Appendix. These estimates conform,

on the one hand, to the above reasoning and, on the other

hand, to the results of the asymptotic analysis by means of

the method of matched asymptotic expansions performed in

Refs. 12 and 13 and 29–32 for the cases of collisionless and

collision-dominated sheath, respectively. In particular, these

estimates show that in the case of moderately to strongly col-

lisional sheath the ion speed varies in the intermediate region

kD � x� L proportionally to 1/x, as in the example (14), if

the ion-atom interaction is described with the use of the

constant collision frequency model, and proportionally to

1=
ffiffiffi
x
p

, if the model of constant ion mean free path is used.

The above considerations refer to the first-approximation

solution. If the analysis for the case of a collisionless sheath

is extended to the second approximation, then the intermedi-

ate transition layer must be considered as discussed in Sec.

III. The asymptotic behavior of the second-approximation

term ui in the transition layer for small and large x=k4=5
D l1=5,

cited at the end of Sec. III B, must coincide with the second

term of, respectively, the expansion for large g of the first-

approximation sheath solution and the expansion for small n
of the first-approximation plasma solution; the van Dyke as-

ymptotic matching principle [Ref. 6, Eq. (5.24)]. Hence, the

latter expansions are, respectively, jvij � vsð1þ 6=g2Þ and

jvij � vsð1�
ffiffiffi
n
p
Þ.

It follows that the example (16) and Figure 1(c) are

more representative of a collisionless sheath than the exam-

ple (12) and Figure 1(a). One should expect therefore that

the plateau in the ion speed distribution manifesting the

Bohm criterion is reasonably well pronounced only for e of

the order 10�3 or smaller.

C. Identifying the Bohm criterion in results
of numerical calculations

Let us consider as an example, a numerical solution of

Eqs. (1)–(4) for the case of a region without ionization

near a floating wall. The ion current density ji is considered

as a control parameter, Te ¼ 3eV, and �i ¼ jvij=ki,

where ki ¼ kiðjvijÞ is the local ion-atom mean free path

which is approximated for argon as ki ¼ 1
nar0

ffiffiffiffiffiffiffiffiffi
v2

i

v2
0
þv2

i

r
with

r0 ¼ 10�18m2 and v0 ¼ 550 ms�1.22 A boundary condition

at the wall is ji ¼ ene

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTe=2pme

p
, two boundary conditions

on the plasma side are those of quasi-neutrality and ion

motion being drift, vi ¼ eE=mi�i.

The Bohm speed under these conditions is vs ¼ 2:7
	103 ms�1. The characteristic ion mean free path ks and the

Debye length kD are estimated as ks ¼ kiðvsÞ, kD

¼ ðe0kTevs=ejiÞ1=2
; it will be seen that these lengths

are characteristic of the sheath for all conditions considered

here. In order to give reference values, we indicate that

ks ¼ 4:0 mm for the plasma pressure p ¼ 1 Pa and

kD ¼ 0:41 mm for ji ¼ 0:42 Am�2.

Distributions of ion speed in the near-wall region for

several combinations ðp; jiÞ are shown in Figures 2 and 3.

Three circles on each curve represent points where the

charge separation ðni � neÞ=ni reaches, in the direction from

the plasma to the wall, 10%, 20%, and 50%, respectively. In

order to illustrate the character of the plasma-sheath transi-

tion, in each case the distribution should be plotted on the

presheath scale. Variants shown in Figure 2 are chosen that

the sheath be weakly collisional, kD=ks � 10�1. In this case,

the presheath is represented by the Knudsen layer and

L ¼ ks, hence e ¼ kD=ks. Since ks varies over two orders of

magnitude for the set of variants depicted in Figure 2, the

distance x is normalized by ks. Since jvij in the presheath

does not vary by orders of magnitude from one variant to the

others, there is no need to normalize it.
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As expected, Figure 2 is qualitatively similar to Figure

1(c). It is natural to identify the presence of a plateau at the

Bohm speed by means of the same criterion as in Sec. IV A:

the plateau is present if the reduction of the ion speed from

vs to 0:7vs requires an increase in x by a factor of at least 10.

Corresponding values of the normalized coordinate n ¼ x=ks

are shown in Table I. One can see that the plateau appears

for e � 10�3, similarly to what happens in the third example

treated in Sec. IV A.

In order to make this asymptotic feature more distinct,

one can modify the numerical solution similarly to how the

function (16) was modified in Sec. IV A. Dashed lines in Fig-

ure 2 depict the numerical solution from which the function

�vs

ffiffiffiffiffiffiffiffiffi
x=ks

p
, representing the second term of expansion in

x=ks of the (quasi-neutral) solution describing the presheath,

was subtracted. As in Sec. IV A, the plateau for e ¼ 10�3,

10�4 becomes better pronounced.

Variants shown in Figure 3 are chosen so that the sheath

be moderately collisional, kD ¼ ks. In this case, the pre-

sheath is represented by the whole plasma slab and L equals

the slab width D, hence e ¼ kD=D. Let us assume for defi-

niteness that D ¼ 4 cm. One can see from Figure 3(a) that

the ion speed in the sheath is of the order of vs, hence the

scales kD and ks evaluated in terms of vs are characteristic of

the sheath, although not of the presheath. Also shown in Fig-

ure 3(a) is the ion speed evaluated by means of the drift

approximation in terms of the local electric field. One can

see that the drift approximation ensures a good accuracy in

the presheath, which could be expected since the presheath

in the cases of moderately to strongly collisional sheath is

collision-dominated as discussed in Sec. IV B and in the

Appendix.

One can see from Figure 3(a) that jvij in the presheath

varies by orders of magnitude from one variant to the others.

Therefore, vi should be normalized if one wishes to analyze

the character of the plasma-sheath transition. Since D is the

same for all variants, there is no need to normalize x. Such

representation is shown in Figure 3(b). As expected, this fig-

ure is qualitatively similar to Figure 1(b).

One can conclude that the pattern of plasma-sheath tran-

sition revealed by numerical calculations is precisely as pre-

dicted by the asymptotic reasoning. In particular, the

numerical solutions reveal the Bohm criterion for small

enough values of the ratio kD=ks, and “small enough” means

the order of 10�3 or smaller.

Results of numerical solution of this problem for

p � 0:1 Pa and ji ¼ 0:42 Am�2 are given in Ref. 22. It is

seen from Figure 2 that these conditions are not suitable for

looking for the Bohm criterion; higher ji and/or lower p

should be considered to this end. On the other hand, the line

for p¼ 0.1 Pa, ji ¼ 0:42 Am�2 in Figure 2 reveals a change

in slope around the Bohm speed and this change represents

the beginning of formation of the plateau manifesting the

Bohm criterion.

D. Discussion

The classic Bohm criterion33 defines the speed with

which cold ions enter a collisionless space-charge sheath

from the adjacent quasi-neutral plasma. As Bohm himself

put it: “the penetration [of the sheath electric field into the

plasma] must be such as to accelerate ions to a velocity cor-

responding to half the mean electron kinetic energy.” This

definition is mathematically meaningful: there is a plateau in
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the ion speed distribution in the region kD � x� L in the

case of a collisionless sheath as illustrated by Figures 1(c)

and 2. The presheath scale L in the case of a collisionless

sheath represents the smallest of all relevant length scales

excluding kD but including the ion-atom mean free path ks.

The plateau is pronounced the better, the smaller the ratio

kD=L is; or, in other words, the higher the degree of plasma

quasi-neutrality is and the smaller effects which come into

play on the presheath scale L, including ion collisions, are in

the sheath; or, equivalently, the better pronounced the differ-

ence between the plasma and the sheath is. The plateau

becomes ideal (horizontal) in the limiting case of infinitely

small kD=L, where deviations from quasi-neutrality are

neglected in the plasma and effects which come into play on

the plasma scale L, including ion collisions, are neglected in

the sheath. The Bohm criterion becomes exact in this ideal

situation and the speed corresponding to the (horizontal) pla-

teau is the Bohm speed. It is important to stress that this rea-

soning does not involve the concept of a sheath edge, i.e., a

boundary separating the quasi-neutral plasma and the space-

charge sheath, which is meaningless in Bohm’s model

(although it is meaningful in the Child-Langmuir model of

ion sheath; see discussion in Ref. 4).

There is no plateau in the ion speed distribution in the

intermediate region kD � x� L in the case of a moderately

collisional to collision-dominated sheath as illustrated by

Figures 1(b) and 3, and therefore no sense in talking of a def-

inite speed with which ions enter the sheath. The presheath

length scale L in this case represents the smallest of all rele-

vant length scales excluding kD and ks.

The terms collisionless, or moderately collisional, or

collision-dominated sheath in the asymptotic treatment mean

that the ratio kD=ks is considered as a small parameter, or the

lengths kD and ks are considered as comparable, or the ratio

ks=kD is considered as a small parameter. For practical pur-

poses, a numerical estimate is useful of how small the ratio

kD=ks should be for the Bohm criterion to be applicable. If

one assumes for definiteness that a plateau in the ion speed

distribution is reasonably well pronounced provided that a

reduction of the ion speed occurring over an order-of-magni-

tude increase in x does not exceed 30%, then kD=ks should

be of the order of 10�3 or smaller.

The smallness of the latter value reveals a severe restric-

tion on practical applications of the Bohm criterion, there-

fore attempts to define a collisionally modified Bohm

criterion are understandable. However, such definitions do

not represent a Bohm criterion in Bohm’s sense, simply

because the concept of a definite speed with which cold ions

enter the sheath, while being meaningful for collisionless

sheaths treated by Bohm, becomes meaningless as collisions

come into play. In other words, Bohm’s definition has no

analogue for collisional sheaths and one cannot introduce a

collisionally modified criterion except using one’s own defi-

nition of the sheath edge (like the point where the electric

field takes a specific value, or the inflection point of the spa-

tial distribution of the ion or electron density, or the point of

a removable singularity appearing after a certain transforma-

tion of governing equations, etc.), which is inevitably arbi-

trary. Without questioning the practical usefulness of such-

type models, one should recognize that the term “Bohm

criterion,” when applied to collisional sheaths, is likely to

contribute to further confusion, as has always happened in

the past, and better be avoided.

V. CONCLUSIONS

A transformation of the ion momentum equation renders

unnecessary resorting to the third approximation in the theory

of intermediate transition layer between a quasi-neutral

plasma and a collisionless sheath and thus clearly reveals the

physics involved. Since the transition layer is positioned

between the plasma and the sheath, ion-atom collisions and/

or ionization are no longer significant there while separation

of charges is not significant yet, so the ion motion is domi-

nated by inertia and the electrostatic force. However, the lat-

ter forces virtually cancel in the vicinity of the sonic barrier

and both above-mentioned weak effects (ion-atom collisions

and/or ionization and separation of charges) also play a role.

It seems that the term “transonic layer,” suggested in Ref. 14,

more adequately reflects the physics than the conventionally

used terms intermediate or transition layer.

The Bohm criterion represents a manifestation of one of

general scenarios of asymptotic matching, namely, matching

on a constant, and is not directly related to the sheath edge

singularity. In order to show it, the relevant scenarios are

illustrated by simple mathematical examples and occurrence

of these scenarios in plasma-sheath transition is analyzed by

means of asymptotic reasoning and numerical calculations.

In the case of a collisionless sheath, there is a plateau in the

ion speed distribution in the intermediate region between the

sheath and the presheath. (The distribution should be plotted

on a logarithmic scale, as usual in multi-scale problems.)

The value corresponding to this plateau has the meaning of a

speed with which ions leave the presheath and enter the

sheath; the Bohm speed. There is no such plateau in the cases

of a moderately collisional to collision-dominated sheath,

and hence no sense in talking of a speed with which ions

enter the sheath.

For the Bohm criterion to be applicable or, in other

words, for the plateau in the ion speed distribution to be pro-

nounced reasonably well, the ratio kD=ks should be small

enough. If one assumes for definiteness that “pronounced

reasonably well” means a reduction of the ion speed by no

more than 30% over an order-of-magnitude increase in x,

then “kD=ks small enough” means of the order of 10�3 or

smaller.

Since the effect of collisions causes the plateau in the

ion speed distribution to disappear, any collisionally modi-

fied Bohm criterion is not a Bohm criterion in Bohm’s sense:

it does not define a speed with which ions enter the sheath,

simply because the concept of a definite speed with which

cold ions enter the sheath, while being meaningful for colli-

sionless sheaths, is meaningless when collisions come into

play. In other words, Bohm’s definition has no analogue for

collisional sheaths, hence one cannot introduce a collision-

ally modified criterion except using one’s own definition.

This explains why the collisionally modified Bohm criteria

available in the literature are different.
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The asymptotic reasoning and estimates employed in

this work are simple. However, they are not simplistic, in

contrast to what someone without experience with the

method of matched asymptotic expansions could think: a

treatment with the use of formal asymptotic expansions con-

firms these reasoning and estimates, by showing that they

result in a self-consistent solution, but does not add to their

essence.
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APPENDIX: PLASMA-SHEATH TRANSITION FOR
COLLISIONLESS TO COLLISION-DOMINATED
SHEATHS VIA ASYMPTOTIC ESTIMATES

1. Ion velocities in collision-free to collision-
dominated sheath and presheath

As discussed in Sec. IV B, the sheath voltage drop may

be assumed to be of the order of kTe=e. The electric field E
in the sheath is of the order of kTe=ekD. The order of magni-

tude of ion speed in the sheath depends on the relationship

between kD and ks. If ks& kD, i.e., motion of the ions in the

sheath is collision-free or moderately collisional, then vi is of

the order of vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTe=mi

p
. If ks � kD, i.e., ion motion in

the sheath is dominated by collisions, then the regime of this

motion depends on the relation between work of the electric

field over an ion mean free path, eEks, and the mean thermal

energy of the neutral particles, kTa; e.g., Ref. 34. Estimates

of this work are restricted to the case of a high-electric field

regime, which occurs if eEks � kTa, or, equivalently,

ks=kD � Ta=Te. (Since Ta=Te is typically of the order of

10�2 under conditions of a glow discharge, this case is repre-

sentative.) In this case, vi is of the order of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eEks=mi

p
or,

equivalently, of the order of vs

ffiffiffiffiffiffiffiffiffiffiffiffi
ks=kD

p
.

Since the voltage drop in the presheath also is of the

order of kTe=e, the above estimates are valid also for the pre-

sheath provided that kD is replaced with L.

2. Transition to a collision-free sheath

If the ion motion in the sheath is collision-free, then the

ion motion in the presheath can be either collision-free or

moderately collisional. [But it cannot be collision-domi-

nated: a collision-dominated bulk plasma and a collision-

free sheath are separated by a moderately collisional region

(a Knudsen layer) and it is the Knudsen layer that represents

the presheath in such situation.] In other words, the hierar-

chy of length scales in this case is kD � L. ks. If the col-

umn of a low-pressure glow discharge is considered as an

example, then the presheath is represented by the plasma

column if the column is collisionless or moderately colli-

sional and by the Knudsen layer if the column is collision-

dominated: L¼R if ks&R and L ¼ ks if ks � R (here R is

radius of the discharge tube). Note that the ionization length

in this example is comparable to R and need not be consid-

ered separately.

The ion velocities in the sheath and presheath are of the

same order vs. Hence, the scenario depicted in Figures 1(a)

and 1(c) occurs. This is the classic case treated by Bohm33

on intuitive grounds and by subsequent workers12,13 by

means of the method of matched asymptotic expansions.

There are also many further works taking into account finite

ion temperature, multiple ion species, etc.

3. Transition to a collision-dominated sheath

If the ion motion in the sheath is dominated by colli-

sions, then the hierarchy of length scales is ks � kD � L
and the ion motion in the presheath is collision-dominated as

well. In the example of a low-pressure glow discharge col-

umn, the presheath is represented by the (collision-domi-

nated) plasma column: L ¼ R.

Two models of ion-atom interaction are widely used in

plasma-sheath problems: the model of Maxwell molecules

(constant collision frequency) and the model of rigid

spheres (constant ion mean free path). In the framework of

the model of constant collision frequency, the ion mobility

does not depend on electric field and vi is proportional to E.

The ratio of ion speed in the sheath to that in the presheath

is of the same order as the ratio of the corresponding elec-

tric fields, i.e., of the order of L=kD, and much larger than

unity. Hence, the scenario depicted in Figure 1(b) occurs.

This case was treated in Refs. 29–31; one should mention

also works,35,36 where the case of a high-voltage sheath was

considered. No accurate intuitive theory, similar to Bohm’s

theory for the case of collisionless sheath, was given for

this case.

Note that while comparing the estimates of this work

with those resulting from analysis,29–31 one should keep in

mind the following. Since the ion current is of the same order

of magnitude in the sheath and presheath, the different orders

of ion velocities in the sheath and presheath are associated

with different orders of the charged-particle density: the den-

sity in the sheath is smaller by a factor of kD=L. In this work,

kD designates the Debye length estimated in terms of charged

particle density characteristic for the sheath. In Refs. 29–31,

the Debye length is estimated in terms of charged particle den-

sity characteristic for the presheath. Let us designate the latter

length by ~kD. The two Debye lengths are related by

~kD=kD ¼
ffiffiffiffiffiffiffiffiffiffiffi
kD=L

p
. It follows that kD ¼ ~k

2=3

D L1=3. Hence, the

scale of the sheath may be expressed as ~k
2=3

D L1=3, in agreement

with the asymptotic results.29–31

In the framework of the model of constant ion mean free

path, jvij is proportional to
ffiffiffiffiffiffi
jEj

p
and the ratio of ion speed in

the sheath to that in the presheath is of the order of
ffiffiffiffiffiffiffiffiffiffiffi
L=kD

p
,

i.e., much larger than unity. It follows that the scenario

depicted in Figure 1(b) occurs again. It follows also that the

ion speed varies in the intermediate region kD � x� L pro-

portionally to 1=
ffiffiffi
x
p

, rather than to 1/x as in the constant col-

lision frequency model and in the example (14). However,
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this difference does not change the pattern. One finds
~kD=kD ¼ ðkD=LÞ1=4

in this case and the sheath scale is

kD ¼ ~k
4=5

D L1=5, in agreement with the asymptotic results.32

4. Transition to a moderately collisional sheath

If the ion motion in the sheath is moderately collisional,

then the hierarchy of length scales is ks � kD � L and the

ion motion in the presheath is collision-dominated. In the

example of a low-pressure glow discharge column, the pre-

sheath is again represented by the (collision-dominated)

plasma column: L¼R.

The ion speed is of the order of vs in the sheath and of

the order of vs

ffiffiffiffiffiffiffiffiffi
ks=L

p
, i.e., much smaller, in the presheath.

The scenario depicted in Figure 1(b) occurs.

In the framework of the model of constant ion mean free

path, the ion mean free path in the presheath is the same as

that in the sheath. Since the latter is comparable to kD, the ra-

tio of ion speed in the sheath to that in the presheath is of the

order of
ffiffiffiffiffiffiffiffiffiffiffi
L=kD

p
and jvij varies in the intermediate region

kD � x� L proportionally to 1=
ffiffiffi
x
p

. In the framework of

the model of constant collision frequency, ki is proportional

to jvij. One finds that the ratio of ion speed in the sheath to

that in the presheath is of the order of L=kD and the ion speed

varies in the intermediate region kD � x� L proportionally

to 1/x.

In summary, the plasma-sheath transitions in the cases

of collision-dominated and moderately collisional sheaths

follow similar patterns. Of course, this should have been

expected since the intermediate region is collision-

dominated in both cases.
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