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Abstract

This is a slightly modified version of Appendix to the paper [1]. Here, a summary
is given of equations of the theory of interaction of thermionic cathodes with high-
pressure plasmas composed of atoms of a single species, ions of a single species, and
electrons. Detailed presentations of different aspects of the theory can be found in
the original works cited below.

1 Model of nonlinear surface heating

Let us consider a thermionic cathode of a high-pressure arc discharge. Joule heat gener-
ation inside the cathode body is assumed to be negligible, the thermal conductivity s of
the cathode material is assumed to be a known function of its temperature: k£ = x (7).
The base of the cathode is maintained at a fixed temperature T, by external cooling and
the rest of the cathode surface is in contact with the plasma or the cold gas and is heated
or, respectively, cooled.

A steady-state temperature distribution in the cathode body is governed by the equa-
tion of thermal conduction

V- (kVT)=0. (1)
The boundary condition at the base of the cathode reads

T="T,. (2)

The density q of the net energy flux from the plasma or the cold gas to the cathode
surface is evaluated as difference between the density of the energy flux from the plasma
to the cathode surface, ¢,, and the density of radiation losses of energy by the cathode
surface: ¢ = g, —eoT;, where ¢ is the hemispheric total emissivity of the cathode material
(a known function of the surface temperature 7,,) and o is the Stefan-Boltzmann constant.

It is assumed that ¢, and the density j of electric current from the plasma to the
cathode surface are functions of the local temperature T, of the cathode surface and of
the near-cathode voltage drop U: ¢, = ¢, (1, U), j = j(Tw,U). (One of conditions of



validity of this assumption is that energy flux coming from the arc plasma to the current-
collecting part of the cathode surface be generated in a thin near-cathode plasma layer
which is independent of the bulk plasma.) The near-cathode voltage drop U is assumed
to be a given parameter which is the same at all points of the current-collecting part of
the surface.

Under the above assumptions, the boundary condition at the part of the cathode
surface that is in contact with the arc plasma and with the cold gas reads

aT
kg =a(Tw,U), (3)
where n is a direction locally orthogonal to the cathode surface and directed outside the
cathode.

In the framework of the above-described approach, a description of the arc-cathode
interaction may be constructed in two steps. At the first step, the (one-dimensional)
problem describing the current transfer across the near-cathode plasma layer is solved
and all parameters of the layer are determined as functions of T;, and U. In particular,
densities of the energy flux and of the electric current from the plasma to the current-
collecting part of the cathode surface, ¢, = ¢, (T, U) and j = j (T}, U), are determined.
At the second step, the nonlinear thermal-conduction problem (1)-(3) is solved.

A detailed presentation of the model of nonlinear surface heating can be found, e.g.,
in [2]. Here, we emphasize only that what is specified in the framework of this approach is
not a distribution of the energy flux from the plasma over the cathode surface but rather a
dependence of the energy flux density on the local surface temperature, this temperature
being unknown apriori. On having solved the thermal-conduction problem (1)-(3), one
will have complete information on a temperature distribution in the cathode and also on
a distribution of the energy flux and electric current over the cathode surface. Integrating
the latter, one will find the arc current I corresponding to a value of U being considered.

Nowadays, the second step of the above-described procedure in most cases does not
pose major difficulties, at least as far as solutions are concerned describing the diffuse
mode of current transfer. The first step is described in the following section.

2 Near-cathode plasma layer

In this section, a summary is given of equations describing the near-cathode layer of
plasmas composed of atoms of a single species, ions of a single species, and electrons.
A generalization of the model for the case of multiple plasma-producing species can be
found in [1].

The near-cathode plasma layer comprises a number of sub-layers, of which the most
important are a space-charge sheath, which is adjacent to the cathode surface, and an
ionization layer, which is adjacent to the sheath. The ion flux to the cathode is generated
in the ionization layer. In the sheath, the ions moving to the cathode and electrons
emitted from the cathode are accelerated.

The space-charge sheath is considered as collisionless for ions. The number density
of flux of ions to the cathode surface, being equal to the density of flux of ions from the



ionization layer to the sheath edge, is evaluated as

J= s, v, = (| FIETe) (4)
my

where n;, is the ion (or electron) density at the sheath edge, v is the Bohm velocity, T, is
the temperature of electrons which is assumed to be constant across the ionization layer
and the sheath, T}, is the temperature of heavy particles (ions and neutral atoms) which
is assumed to be constant across the ionization layer and the sheath and equal to the
temperature T,, of the cathode surface, m;, m, and m, here and further are masses of the

ion, the atom and the electron.
The number density of flux of plasma electrons which come to the cathode surface from
the ionization layer after having overcome the retarding electric field in the space-charge

sheath is
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where Up is the voltage drop in the sheath.

Jem the electron emission flux from the cathode surface is evaluated by means of
the Richardson-Schottky formula. The electric field at the cathode surface, involved in
this formula, is obtained by solving the Poisson equation in the sheath jointly with a
kinetic equation describing the motion of ions and the Boltzmann distribution for plasma
electrons (the space charge of emitted electrons is neglected) and reads

27’Lz‘5k’Th Ui — Ui 4 GUD 1/2
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(7)

The densities of net electric current and of plasma-related net energy flux to the
cathode surface are
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On the edge (plasma side) of the ionization layer, the ionization equilibrium is assumed.
The local ion (or electron) density n;,, and atomic density n.. are evaluated, for given
temperatures T}, and T, and plasma pressure p, with the use of the Saha equation. The
variation of the charged particle density across the ionization layer is given by the formula

Nis . OéCQ\/ 1 + B (9)
Nioo 02+2a02\/1+ﬁ+012\/1+6‘
Here C5 is a dimensionless coefficient defined by Eq. (37) of Ref. [3], which depends on

B and ¥ = Moo /Nuso and varies for 5 > 1 between approximately 0.67 and 1 (see Fig. 7
of [4]). « is the ratio of the ionization length to the mean free path for ion-atom collisions

defined by the formula
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where ();, and k; are the average cross section for momentum transfer in elastic collisions
ion-atom and the rate constant of ionization of atoms for the gas being considered. Note
that C;, has the meaning of average relative speed of ions and atoms; in the case of a
plasma produced in a pure monoatomic gas being under consideration in this section,
m; &~ m, and the second equation in Eq. (10) coincides with the corresponding expression
in [4].

The voltage drop in the ionization layer and the total voltage drop in the near-cathode

layer are evaluated as

kTe 100

In 2% U =Up+ U (11)
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The equation of balance of the electron energy in the ionization layer reads

Jem - Je) +]
2

= J.(2KT, + eUp — AA) + 3.22KT, + J,E, (12)
€

Jom (2T + cUp — AA) + U,

where A A is the Schottky correction to the work function and E is the ionization energy.

The above-described relationships represent a complete set of equations which allows
one to determine all parameters of the near-cathode plasma layer for a given plasma-
producing gas, plasma pressure, and work function of the cathode material as functions
of T, and U. In particular, one can determine functions ¢, (7,,,U) and j (T,,U). A
detailed presentation of the model can be found in [2,5, 6].

Note that difficulties arise in solving the above-described equations under conditions at
which there is practically no plasma adjacent to the cathode. Therefore, these equations
are solved at T, exceeding certain temperature value which is typically 500 K; ¢, and j
are set equal to 0 at lower T),. (It should be emphasized that this comment has purely a
technical sense and the value T;, = 500 K should not be identified with the temperature
separating the cathode surface in contact with the plasma from that in contact with the
cold gas.)

All the papers cited below are available at
http://fisica.uma.pt/ingles/pessoal/Mikhail_Benilov/lista.html
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