Cadeira: Estudo do Meio Físico-Natural I

Ano lectivo: | 2016/2017 (1° Semestre)

TESTE 1 (2016/10/24)

Duração: 2 horas

Nome:

Número:____ Curso: Educação Básica

Época: Normal

Cotação:

1-4	5-10	11-15	16-19	Т

Algumas fórmulas:

Variação relativa percentual: $\frac{x_f - x_i}{x_i} \times 100\%$

Módulo de um vector: $A = \sqrt{A_x^2 + A_y^2}$

Movimento uniforme: $v = v_0$; $x = x_0 + v_0 t$

Movimento uniformemente variado: $v = v_0 + at$; $x = x_0 + v_0 t + \frac{1}{2}at^2$

 $\sin \theta = \frac{\text{cateto oposto}}{\text{hipotenusa}};$ $\cos \theta = \frac{\text{cateto adjacente}}{\text{hipotenusa}};$ $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\text{cateto oposto}}{\text{cateto adjacente}}$

Força gravítica: $F_g = G \frac{m_1 m_2}{r^2}$

Força de atrito: $F_{ae \max} = \mu_e mg$; $F_{ac} = \mu_c mg$

Centro de massa: $\vec{r}_{\rm CM}=\sum_{i=1}^N\frac{m_i\vec{r}_i}{m_i}=\frac{m_1\vec{r}_1+m_2\vec{r}_2+\cdots}{m_1+m_2+\cdots}$

Massa volúmica: $\rho = \frac{m}{V}$

Pressão: $p = \frac{F}{A}$ Pressão a uma profundidade h: $p = p_0 + \rho g h$

Prensa hidráulica: $A_2/A_1 = F_2/F_1$

Eq. da continuidade: $A_1v_1 = A_2v_2$ Eq. de Bernoulli: $p_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1 = p_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2$

Algumas constantes e factores de conversão: $G = 6.67 \times 10^{-11} \,\mathrm{N} \,\mathrm{m}^2 \,\mathrm{kg}^{-2}$; $g = 9.8 \,\mathrm{m} \,\mathrm{s}^{-2}$;

 $\rho_{H_2O} = 1 \,\mathrm{g \, cm^{-3}} = 10^3 \,\mathrm{kg \, m^{-3}}; \ \ \mathrm{press\~ao} \ \ \mathrm{atmosf\'erica} = 1,013 \times 10^5 \,\mathrm{Pa};$

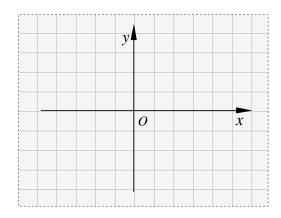
1. [0.75] Considere a seguinte expressão, onde F é uma força, m é uma massa, v é uma velocidade e r é um raio.

$$F = m \frac{v^2}{r}$$

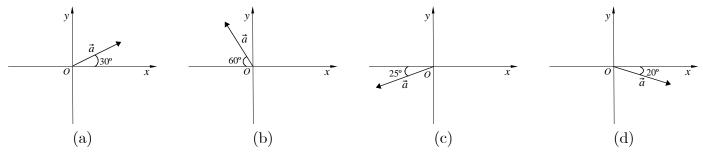
Verifique se a expressão é dimensionalmente correcta.

2. [1] Escreva os seguintes números em notação científica:

$$0.034 =$$


$$0,002133 \times 10^4 =$$

$$102934 \times 10^{-2} =$$


$$0,045 \times 10^{-5} =$$

- 3. [0.5] Determine a ordem de grandeza de 0,3157.
- 4. [1] Quantas ordens de grandeza tem o número 0,03 a menos que 0,052?

- 5. [0.5] O aumento dos preços reflectiu-se no preço da electricidade. O kW h que antes custava 0.21 € passou a custar 0.28 €. Determine a variação relativa percentual do preço da electricidade?
- 6. [1] Considerando que uma pessoa come em média 3 vezes por dia. Faça uma estimativa da ordem de grandeza do número total de vezes que essa pessoa terá comido durante 7 décadas.
- 7. [0.75] Represente os vectores $\mathbf{L} = (1,3)$, $\mathbf{K} = (-4,2)$ e $\mathbf{M} = (-2,-3)$ na seguinte figura

8. [2] Sabendo que o módulo do vector \vec{a} representado na figura é igual a 5.00, escreva o valor das componentes a_x e a_y para cada um dos casos.

$$\begin{cases}
 a_x = \\
 a_y =
\end{cases}
\qquad
\begin{cases}
 a_x = \\
 a_y =
\end{cases}
\qquad
\begin{cases}
 a_x = \\
 a_y =
\end{cases}$$

- 9. [1] A posição de uma partícula em função do tempo é dada por $x = 0.3t^3 + 0.4t^2 + 0.5$ (SI). Determine a posição inicial da partícula e a posição para t = 5 s.
- 10. [1,5] Um automóvel entra numa ponte com velocidade de módulo $36 \,\mathrm{km}\,\mathrm{h}^{-1}$ e, após percorrê-la com aceleração constante $a=2\,\mathrm{m}\,\mathrm{s}^{-2}$, atinge a outra extremidade com velocidade de módulo $72\,\mathrm{km}\,\mathrm{h}^{-1}$. Determine o comprimento da ponte.

11.	[1.5] Um corpo adquire uma aceleração de módulo 2.5 m s ⁻² quando sujeito às forças $\vec{F}_1=(1.50\vec{e}_x+1.30\vec{e}_y)$ N e $\vec{F}_2=(-3.00\vec{e}_x-2.50\vec{e}_y)$ N.
	(a) Qual é a direcção da aceleração?
	(b) Qual é a massa do corpo?
12.	$[0.5]$ Um rapaz de $70\mathrm{kg}$ de massa encontra-se a $10\mathrm{m}$ de uma rapariga de $50\mathrm{kg}$ de massa. Determine a intensidade da força de atração (gravitacional) entre ambos.
13.	[1.5] Um corpo de 5 kg de massa está em repouso sobre uma superfície horizontal. O coeficiente de atrito estático entre o corpo e a superfície é 0.40 e o coeficiente de atrito cinético 0.30 .
	(a) Qual é o módulo da força mínima que provoca o início do movimento do corpo?
	(b) Qual é o módulo da força mínima que mantém o corpo em movimento, uma vez iniciado este?
	(c) Calcule o módulo da força de atrito se aplicarmos uma força horizontal de 12 N sobre o corpo.
	(d) Se a força horizontal é de 50 N, qual é o módulo da força de atrito?
14.	$[1,5]$ Três corpos de massas $m_1=1,2\mathrm{kg},\ m_2=2,5\mathrm{kg},\ m_3=3,4\mathrm{kg}$ formam um triângulo equilátero cujos lados têm de comprimento 140 cm. Considere que o corpo de massa m_1 se encontra na origem dum sistema de eixos cartesiano e que o corpo de massa m_2 se encontro no topo do triângulo equilátero. Determine o centro de massa do sistema formado pelos três corpos em relação a este sistema de eixos.
15.	$[0.5]$ Calcule o aumento de pressão no fluido de uma seringa quando uma enfermeira aplica uma força de $42\mathrm{N}$ ao pistão circular da seringa que tem de raio $1,1\mathrm{cm}.$

16.	$[0.5]$ O sangue flui de uma artéria de raio $0.3\mathrm{cm}$, onde a velocidade é $10\mathrm{cms^{-1}}$, para uma região onde o raio é reduzido para $0.2\mathrm{cm}$ devido ao espessamento das paredes arteriais (arteriosclerose). Qual é a velocidade do sangue na região mais estreita?
17.	[1] Encontre a pressão a uma profundidade de 15 m na água do mar, assuma que a massa volúmica da água do mar é de cerca de $1.25\mathrm{kg/l}$.
18.	[1.5] Num cano de área de secção transversal $4.0\mathrm{cm^2}$ água move-se com uma velocidade de $5.0\mathrm{ms^{-1}}$. A água desce gradualmente 7 m à medida que o cano aumenta a sua área para $8.0\mathrm{cm^2}$. (a) Qual é a velocidade da água no nível mais baixo?
	(b) Se a pressão ao nível mais elevado for $2\times 10^5\mathrm{Pa}$, qual será a pressão ao nível mais baixo?
19.	 [1.5] Nas aulas de prática laboratorial desta cadeira realizámos uma experiência onde se pretendia construir um balancé recorrendo a uma régua e um clip de folhas de alta capacidade. (a) Explique por poucas palavras em que consistia a experência por nós realizada.
	(b) Verificou-se que se a posição do fulcro fosse desviada do centro de massa da régua, os cálculos que havíamos feito não correspondiam ao que acontecia na realidade. Porque é que isso acontecia e como é que corrigimos os nossos cálculos?