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Resumo

O trabalho apresentado nesta dissertação refere-se à modelação de padrões de auto-
organização de densidade de corrente em elétrodos de descargas DC luminescentes.

Padrões de manchas anódicas foram modelados de forma auto-consistente pela
primeira vez e os fenómenos nas manchas foram investigados. As soluções que de-
screvem as manchas foram encontradas num intervalo de correntes com múltiplas
soluções. Foi descoberta uma inversão da densidade de corrente local do ânodo no cen-
tro de cada uma das manchas, isto é, mini-cátodos são formados dentro das manchas;
poder-se-ia dizer, as manchas do ânodo funcionam como uma descarga luminescente
unipolar. As soluções não se enquadram no padrão convencional de auto-organização
em sistemas dissipativos não-lineares biestáveis; por exemplo, as transições de um
modo para outro não se realizam através de bifurcações.

Padrões auto-organizados de manchas catódicas em descargas luminescentes foram
modelados na camada de plasma junto ao cátodo, numa geometria igual à utilizada na
maioria das experiências descritas na literatura. O efeito da geometria da câmara de
descarga nas manchas foi investigado. Os padrões de manchas modelados são idênticos
aos observados nas experiências e similares aos calculados na configuração de elétrodos
planos em paralelo.

Uma tentativa foi feita para modelar quantitativamente a descarga DC lumines-
cente com manchas catódicas. Uma descrição detalhada desta modelação, a mais
precisa deste fenómeno até à data, é apresentada. Em geral, os padrões calculados
são semelhantes aos observados nas experiências, mas as CVC são qualitativamente
diferentes.

Cenários de transições entre modos com diferentes padrões de manchas em elétro-
dos de descargas DC luminescentes e em cátodos de descargas de arco são investigados.
No caso de transições entre padrões em cátodos de descargas DC luminescentes, foram
encontradas as transições observadas nas experiências que podem estar diretamente
relacionados a bifurcações de soluções estacionárias, e as bifurcações correspondentes
foram modeladas. Os padrões encontrados na modelação numérica estão em conformi-
dade com os observados no decurso das transições nas experiências. No caso dos cáto-
dos de descargas de arco, mostra-se que qualquer transição entre diferentes modos de
transferência de corrente está relacionada a uma bifurcação de soluções estacionárias.

Palavras chave: Interacção plasma-cátodo, Auto-organização, Descargas lumi-
nescentes, Manchas no ânodo, Cátodos termiónicos, Manchas catódicas
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Abstract

In this work self-organized patterns of current density on electrodes of dc glow dis-
charges were modelled.

Patterns of anodic spots were modelled self-consistently for the first time and their
physics was investigated. The solutions describing the spots were found to exist in a
region of current with multiple solutions. A reversal of the local anode current density
in the middle of each of the spots was discovered, i.e. mini-cathodes are formed inside
the spots or, as one could say, the anode spots operate as a unipolar glow discharge.
The solutions do not fit into the conventional pattern of self-organization in bistable
nonlinear dissipative systems e.g. the modes are not joined by bifurcations.

Self-organized patterns of cathodic spots in glow discharges were computed in the
cathode boundary layer geometry, which is the one employed in most of the experi-
ments reported in the literature. The effect that the geometry of the vessel has on
the spots was investigated. The computed spot patterns are the same as the ones
observed in the experiment and similar to the ones computed in the parallel plane
electrode configuration.

An unsuccessful attempt was made to quantitatively model DC glow discharge with
cathodic spots, an account of this, the most accurate modelling of the phenomenon yet
performed, is given. In general, the computed patterns are observed in the experiment
but the CVC are qualitatively different.

Scenarios of transitions between modes with different patterns of spots on elec-
trodes of dc glow discharges and cathodes of arc discharges are investigated. In the
case of transitions between patterns on dc glow cathodes, those transitions reported in
the experiments that may be directly related to bifurcations of steady-state solutions
are found and the corresponding bifurcations are computed. Patterns found in the
numerical modelling conform to those observed in the course of the transitions in the
experiment. In the case of cathodes of arc discharges, it is shown that any transition
between different modes of current transfer is related to a bifurcation of steady-state
solutions.

Keywords: Plasma-electrode interaction, Self-organization, Glow discharges, Ca-
thodic spots, Anodic spots
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Chapter 1

Introduction

1.1 Direct current glow discharge

In 1838 Michael Faraday produced the first report of a direct current (DC) glow dis-

charge [1]. Faraday, who used a voltaic pile as a power source, passed current through

different gases, at various pressures, via electrodes in a glass bell jar. At low pressures,

he observed a phosphorescent continuous glow around one of his electrodes, which he

described as "exceedingly beautiful". The main features of a DC glow discharge can

be read about in the textbook by Raizer [2]. The discharge has been significant in both

fundamental plasma science and in applied plasma science. DC glow discharges have

been used in spectroscopy [3], allowing research on the elements of materials in the gas,

liquid, and solid state; laser technology [4], with laser gain medium being electrically

pumped by DC glow discharge; surface property modification [5], that atmospheric

pressure glow discharge may adapt the wetting properties of a surface; cancer inhi-

bition research [6], glows with liquid anodes have been demonstrated to suppress the

activity of at least two types of cancer cell, in vitro; sources of ultraviolet radiation

[7], that DC glow microdischarges, when configured to yield high energy electrons in

a high pressure gas, result in excimer production; to name just a few examples of DC

glow discharge being utilized in science.

1.1.1 Modelling and theory during the 20th century

A well-known one-dimensional description of the cathode fall was formulated in 1934

by von Engel and Steenbeck [2]. The description reveals a U-shaped current density

voltage characteristic (CDVC). However, the transition from the Townsend discharge

to the abnormal discharge, as revealed by the von Engel and Steenbeck solution, is

particularly different to what is observed in experiments. Instead of the normal dis-

charge observed in the experiments, the solution by von Engel and Steenbeck has a

1
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one-dimensional distribution of charged particles, and reveals a falling CDVC section.

While von Engel comments that the causes of the differences are basically not un-

derstood [8], Steenbeck proposes arguments to describe the observed physics of the

normal discharge on the basis that the axial electric field ought to be minimized [9]

(the so-called ‘Steenbeck’s principle of minimum power’, which became more widely

accepted as it was reported that this principle is a corollary of the principle of minimum

entropy production [10]). The rising section of the CDVC associated with the von En-

gel and Steenbeck solution corresponds with the abnormal discharge in a qualitatively

accurate way.

Circa 1960, glow discharge modelling results started to be found with the aid

of electronic computers [11, 12]. The authors aimed to solve the relevant, coupled,

physical equations: in [12], equations of conservation of number density of electrons

and ions (considering only drift fluxes), and Poisson’s equation, were solved. An

effective Townsend ionization coeffi cient was used (recombination was neglected). The

results essentially duplicated von Engel and Steenbeck’s solution. In particular, there

was agreement, whereby under particular conditions1, the CDVC was U-shaped.

In the 1980s, two-dimensional modelling of glow discharges started to emerge (e.g.

[14—16]) which, based on similar underlying physics as the one-dimensional models,

revealed the structure of the normal spot. In 1988 [17] Boeuf solved a two-dimensional

model, and found the structure of the normal spot, the normal current density effect,

and the current-voltage characteristic (CVC) plateau associated with the normal spot.

The basic mechanisms of the model are drift and diffusion for the ions and the electrons,

volume ionization, recombination, and secondary electron emission. The model yielded

an accurate qualitative description of the transverse behavior of the transition from

the abnormal mode to the normal model.

The aforementioned modelling used a fluid description of the plasma. This ap-

proach is based on the taking of moments of the Boltzmann equation (BE) (e.g.

[18, 19]), for each of the species considered, coupled with the Poisson equation (or the

relevant set of Maxwell’s equations). For that sake of practicality, it is normally the

case that the electron energy distribution function is assumed to be either Maxwellian

or a two term spherical harmonic expansion with the second term accounting for an

anisotropic perturbation [20]. The set of equations generated from the taking of the

moments of the BE is closed, in the case of the electrons, typically at the level of

either momentum, or energy. In the case of momentum, one typically employs the

drift-diffusion approximation, with the transport and kinetic coeffi cients related to

1 If a discharge, by way of its product of pressure and the distance of electrode separation, would
have a breakdown voltage on the rising section of the Paschen curve, then it will have a U-shaped
CVC (i.e. it will not be an obstructed discharge) [13].
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space and time by functions (built using the solution to the BE) with the reduced

electric field as their argument: the so-called local-field approximation (LFA). The

LFA is suitable when the characteristic length of electron energy relaxation is small

compared to a characteristic discharge length. When one includes in the set of equa-

tions to be solved an equation for electron energy, the transport and kinetic coeffi cients

for the charged species may be related to space and time by a function (built using the

solution to the BE) with the average of electron energy as the argument: the so-called

local mean energy approximation. The latter approximation is more accurate and

allows for the study effects such as striations [21].

Strictly speaking, one should only use the fluid-based approach to the modelling

of a plasma when that plasma has an energy distribution function for the charged

species that are Maxwellian (although, fluid approaches may perform ’better than

they should’, e.g. [22] p. 35). When a fluid-based approach is not appropriate, one

may employ a kinetic-based approach to modelling [23] e.g. when the species are

in a strongly non-uniform field (as may be the case in the cathode fall [24]), and

regions with few collisions. In general, the kinetic based approach requires a greater

computational effort, but fewer a priori assumptions.

By the end of the 20th century, the main features of the discharge, e.g. those dis-

cussed in chapter 8 of [2], had been, quite faithfully, reproduced by computer models.

1.2 Self organization

The term self-organisation is used in various disparate academic disciplines. In social

science [25], it is used in connection with phenomena such as city formation; in com-

puter science [26], in connection with methods of utilizing idle system components; in

biology [27], used in the context of morphogenesis, whereby identical cells may differ-

entiate into, for example, an organism with eyes. Broadly, the term self organization

is used to describe the spontaneous occurrence of order among multiple subunits, from

a source other than the direct motivation of an external influence.

In this thesis, the term self-organisation is used to refer to the occurrence of dissipa-

tive structures. Prigogine coins the term ‘dissipative structure’[28] in 1967, referring

to structures, or patterns of structures, with a clear degree of spatial regularity, which

form in conditions far from thermodynamic equilibrium, and are maintained by fluxes

of matter and energy. The emergence of spatiotemporal structures (e.g. the Belousov—

Zhabotinsky reaction [29]), are neglected in this thesis.

In section 1.2.1 the thermodynamics of self-organisation are commented on for the

sake of historical and scientific context. In sections 1.2.2 and 1.2.3 the concepts are

briefly introduced of stability, and bifurcations, respectively.
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1.2.1 Thermodynamics of self organization

Prigogine’s textbook [30] on self-organization introduces dissipative structures in the

same way as in this section.

It is well known that the second law of thermodynamics prevents the spontaneous

formation of order in isolated systems. Also, that in such systems there is a coupling

between the degree of order in the system and its evolution, and ultimately its stability.

In closed systems, whereby exchanges of heat with outside reservoirs are permitted,

ordered structures may arise: Helmholtz free energy is minimized at thermodynamic

equilibrium and for low temperatures the probability that a particle in the system

is at a state of a low energy level (by Boltzmann’s ordering principle [31]) is high,

hence solid crystals or phase transitions occur. At moderate temperatures (e.g. the

temperature of animal cells), however, the probability of the formation low entropy

structures, via the former ordering principle, is prohibitively small, and yet, order in

cells exist. Apparently a different source of order is also available to nature.

A class of thermodynamic system termed ‘open’was studied at the de Donder

school in Brussels (see e.g. books by von Bertalanffy [32] and E. Schrodinger [33] on

the physics of life), i.e. a thermodynamic system was studied that takes into account

exchanges of matter and heat with its surroundings. Prigogine in 1945, working from

the school, makes the contribution of extending the second law of thermodynamics to

such open systems. Entropy change is considered in a time interval, and decomposed

into two contributions: entropy flux due to exchanges with the environment, and

entropy production due to irreversible processes inside the system. The change in

entropy in time can therefore be negative, as exchanges of negative entropy from

outside system may be dominant (change in entropy would regularly be seen as being

only positive, if one only considered isolated systems). Thus in principle, ordered

structures may arise in open systems as long they are being maintained by fluxes of

matter and energy with ‘negative entropy’. Such structures are termed ‘dissipative

structures’. Many apparent examples of such structures are listed in [34]. An early

example of which, observed by Lehmann in 1902 [35], is a localized solitary luminous

spot found on an anode of a DC glow discharge.

Prigogine’s textbook points to unfinished thinking on a criterion based on thermo-

dynamic state functions (e.g. entropy, entropy production), for the onset of dissipative

structures. A comment is made that such structures may coincide with a minimum

of entropy production. Contemporary academics are still debating the possibility of

finding such a general thermodynamic criterion [36].

The general criterion of Steenbeck’s principle of minimum power in gas discharge

physics has been found to be not without problems. An example of such a problem
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follows. Within the framework of a model of nonlinear surface heating of a cathode

of an arc discharge, a computed solution associated with the lowest discharge voltage

was selected (a 3D solution with a spot at the edge of the front face of the cath-

ode surface), from among several other solutions (describing modes with and without

spots) existing for the same discharge current, as the one that is stable [37] based

on Steenbeck’s principle of minimum power. However, numerical results presented in

[38] and the analytical theory [39] indicate that the low-voltage branch is unstable,

and the high-voltage branch is stable. Further, even if it was found that the principle

of minimum entropy production was valid for gas discharges, Steenbeck’s principle of

minimum power is shown [40] to not be a corollary of the principle of minimum entropy

production. Hence, an understanding of the general theory of stability is important in

situations with multiple solutions.

1.2.2 An introduction to stability

The literature on stability is well developed (see e.g. the textbook [41]). The con-

cept and some common approaches to studying stability are briefly introduced in this

section.

A system of differential equations governing the evolution of variables in a space,

such as phase space, may be constructed using first principles such as classical physics

and potential fields. A solution to those equations is said to be stable if the time

evolution of an initial state plus a perturbation will remain close to the initial state

at all subsequent moments. Otherwise, the solution is unstable. One may describe a

solution as locally stable, globally stable, or stable against a particular perturbation.

A solution is globally stable if any perturbation on an initial state would result in an

evolution of the solution that would have it return to the initial state. A solution is

locally stable, or metastable, if any small perturbation on the solution would result in

an evolution of the solution that would have the solution return to the initial state.

One may employ different approaches when studying stability e.g. using the Lya-

punov stability criterion [30]: one constructs a function whose rate of change deter-

mines if an initial state is ’asymptotically stable’(i.e. if it is stable against any small

perturbation). It is not always straightforward, and may even be impossible, to iden-

tify a suitable function in a given situation. Another approach is to use linear stability

theory [42]: an initial state under investigation and a small perturbation with an ex-

ponential time dependence is substituted into the system of equations and boundary

conditions. The problem is linearized with respect to the perturbation, resulting in an

eigenvalue problem whose spectrum describes the mode of development, or damping,

of the perturbation. With the eigenvalues being the growth increment of the pertur-
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bations. If real parts of all eigenvalues are negative, the state is stable; if at least one

eigenvalue has a positive real part, the state is unstable.

1.2.3 An introduction to bifurcations

A concise summary of the information from bifurcation theory relevant to this thesis

can be found in the Appendix of [43]; a more detailed discussion of the theory can be

found in, e.g., the review [44]. A brief introduction to bifurcations follows.

A bifurcation is a splitting of a solution occurring when one varies a system control

parameter past a certain critical point (the bifurcation point). The splitting corre-

sponds with a qualitative or topological change to the solution(s) past the bifurcation

point. An example is the pitchfork bifurcation: consider a two-dimensional (axially

symmetric) solution describing, for instance, the spatial distribution of the number

density of some particles in a three-dimensional space, that varies with a control pa-

rameter p. At p = p0 there exists a bifurcation point, before and after the bifurcation

point the stability of the solution changes2 (for definiteness, the solution is stable for

p > p0 and unstable for p < p0). At p0 a three-dimensional solution also exists, that

branches off away from the two-dimensional solution. If the three-dimensional solution

branches off into the range p < p0, where the two-dimensional solution is unstable, then

the pitchfork bifurcation is supercritical. One would observe, as one varies from high to

low p, along the solutions that are stable, a smooth transition from the two-dimensional

distribution of the number density to a three-dimensional distribution. The effect of

symmetry breaking leads to an ordering of the solution (e.g. a bifurcation point on an

axially symmetric two-dimensional solution may lead to a three-dimensional solution

with azimuthal periodicity; from e.g. a torus like distribution to a distribution in the

form of a ring of equidistant spheres).

1.3 Self organization of spots on electrodes of glow dis-
charges

1.3.1 Observations of spots on cathodes of glow discharges

The earliest examples of observations of luminous spots of current density on cathodes

of glow discharges were of the solitary normal spot e.g. as in Figure 16 of [45].

In 2004, during a study of DC glow microdischarges as sources of excimer emis-

sion [46], organized patterns of luminous spots of current density on the cathode, as

in Figure 1.1, were observed. During the last decade many accounts were made of

2 In the context of linear stability analysis, a bifurcation coincides with the switching of the sign of
an eigenvalue.
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Figure 1.1: Patterns of luminous spots of current density on a cathode of a DC glow
microdischarge, for different values of discharge current. Xenon under a pressure of 75
torr. Reprinted from [46].

such spots [7, 46—54]. The patterns have been observed for different gases [55] (in-

fact, the experiments on self-organization on cathodes of DC glow microdischarges in

gases other than xenon were motivated by the prediction, generated from modelling

results, that the patterns can occur in alternative plasma-producing gases). In terms of

discharge geometry, the vast majority of the experiments have been performed in the

so-called cathode boundary layer configuration, a device comprising a flat cathode and

a ring-shaped anode, separated by a dielectric (cf., e.g., Figure 1 of [54]). Note that

the modelling had only been performed for discharges with parallel-plane electrodes

[42, 43, 53, 56—58]. Experiments that were performed in the parallel-plane electrode

configuration show [49] self-organized patterns that are similar to the ones found in

the cathode boundary layer configuration.

Spot patterns on cathodes of DC glow discharges have so far only been directly

observed in microdischarges. There is currently no explanation why the patterns have

not been observed in larger devices. Indications that the patterns also occur in larger

atmospheric pressure glow discharges exist in the form of unexplained erosion patterns

on cathodes [59], and observations of ring and cog-like structures [60].
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Figure 1.2: Computed CVC of DC glow discharge. Solid line: 1D mode. Dashed line:
2D modes. Circles: bifurcation points. Xe plasma. Pressure of 30 Torr. Adapted from
[56].

1.3.2 Theory and modelling of cathode spots

As discussed in section 1.1.1, the CDVC revealed by the analysis of von Engel and

Steenbeck, and the CDVC computed in one-dimensional simulations [11, 12], are U-

shaped. However, if one includes in consideration the discharge solution describing ‘no’

discharge (the trivial solution), of 0A from 0V to the breakdown voltage, then instead

of a U-shaped CDVC one finds an N-shaped CDVC. The left-hand branch belonging

to the stable unlit discharge, the right hand branch belonging to the stable abnormal

discharge, and the central branch belonging to the unstable region with a negative

differential resistance. That the system is N-shaped and bistable is an indication that

phase coexistence will manifest [61]. The falling section of the ’N’is unstable and, in

order for a discharge to be found in an experiment at those values of current, a stable

solution ought to exist in that region of current too. One may attempt to employ

a Maxwell construction3 to find a stable branch [62]. The new stable branch would

correspond with a solution describing a coexistence of the stable states on either side

of the N-shaped system (see e.g. Figure 5. of [63]).

3A classical example of a Maxwell’s construction is performed on van der Waals equation of state
at low temperatures. The original N-shaped isotherm has its falling section (on the ’N’) supplemented
with a thermodynamically stable horizontal section.
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In 1988 Benilov [64] proves that within a basic model used to describe a glow

discharge (one similar to [12]) there exists multiple solutions in the same range of cur-

rents: a one dimensional solution, and multidimensional solutions bifurcating from the

one dimensional solution near the beginning and end of the CVC region with negative

differential resistance. Benilov proposes that the multidimensional solution(s) may

describe the behavior of the normal discharge. In 2010 Almeida proves this hypothesis

[56] by means of numerical simulation: a two-dimensional solution is computed that

indeed reproduces the behavior of the normal mode (a solution similar to the one found

by Boeuf [24]) which bifurcates from the one-dimensional solution: CVC in Figure 1.2.

The description of the normal discharge as a coexistence of the abnormal discharge

and the unlit discharge is very convincing. It (apparently, alone) explains the normal

current density effect: for a decreasing current, less plasma is in the stable state of

the abnormal discharge (the abnormal discharge at a particular voltage), and with the

system being bistable, the plasma converts to, the only other stable configuration, the

unlit discharge.

In 2011 Almeida [42], using the theoretical description of multiple solutions devel-

oped to describe the normal mode, computed three-dimensional patterns of spots on

the cathodes of microdischarges (see Figure 1.3).Modelling has since provided a wealth

of modes and the comparison between the spots found in these modes and the spots

observed in the experiment (those from section 1.3.1) is convincing.

1.3.3 Observations of spots on anodes of glow discharges

Luminous spots on anodes of DC glow discharges have been observed for over a century

now e.g., [35, 65—71]. The spots have been observed in a wide range of pressures [65, 71],

and in different gases [66]. At low pressures, a connection has been observed with the

various types of double layer structures (e.g.[72—77]). Single spots have been studied

in some depth and are being utilized as ion sources (which can produce a stable and

high-current ion beam) [78].

1.3.4 Theory and modelling of anode spots

The current theoretical framework for the patterns of luminous spots of current density

on anodes is not well developed. For instance, no self-consistent modelling has been

performed (modelling had been performed that revealed current density structures e.g.

[79], but these, apparently, treated the column as a cathode). A detailed description

of the spots is absent.

A theoretical analysis, and experimental investigation, of the anode layer region

is performed in [80] which indicates that instabilities found in the regions’so-called
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Figure 1.3: a) CVC of 1D and 3D modes. b-d) distributions of current density over
the cathode surface. Solid line: 1-D mode. Dotted line: 1st (in order of decreasing
current) 3D mode. Dashed line: 8th 3D mode. Dashed-dotted line: 12th 3D modes.
Circles: Bifurcation points. (b).(d) Distributions of current density for (b) 1st 3D
mode (c) 8th 3D mode (d) 12th 3D mode. Reprinted from [42].
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subnormal regime are a precursor for the formation of anode spots. In relation to

double layers, a theoretical analysis by [76] also indicates precursors for the onset of

spots (a positive anode bias above a threshold value).

Patterns of spots have been calculated by means of a phenomenological theory,

based on the general trends of self-organization by [69].

1.4 The questions addressed in this thesis

The questions that will be addressed in this thesis are discussed in this section.

Can the well developed theoretical interpretation of cathodic spots be applied to

the spots found on anodes of DC glow discharges? What is the behavior of the anode

spots? In chapter 2 a report is given of self-consistent modelling of patterns of anodic

spots, the physics of the spots is investigated. The solutions describing the anode spots

are compared to the cathode spots and the conventional pattern of self-organization

in bistable nonlinear dissipative systems.

To what extent does the vessel geometry effect the patterns of the spots found on

cathodes of DC glow microdischarges? In the chapter 3 a report is given of modelling

of self-organized patterns of cathodic spots in the cathode boundary layer geometry,

which is the one employed in most of the experiments reported in the literature. The

modelling is compared to prior modelling done in the plane parallel geometry and to

the spots observed in the experiment.

Can modelling of cathode spots on glow microdischarges be quantitatively accu-

rate? In the chapter 4 a report of 3D fluid modelling of the cathodic spots is performed

for the experimental conditions, using the local mean energy approximation, an ac-

count of several plasma and gas species, and a fairly detailed account of their reactions.

The modelling results are compared to the experimental accounts.

Can direct proof of bifurcations in DC gas discharges be found? In chapter 4 a

report is given of an analysis of scenarios of transitions between modes with different

patterns of spots on electrodes of DC glow discharges and cathodes of arc discharges.

In the case of transitions between patterns on cathodes of DC glow discharges, ex-

perimental reports are found that appear to be related to bifurcations of steady-state

solutions, the corresponding bifurcations are computed.



Chapter 2

Anode spots

2.1 Introduction

As was stated in the first chapter, self-organized arrangements of spots and patterns

on cathodes of DC arc and glow discharges have been understood and systematically

described in terms of multiple steady-state solutions, which exist in conventional mod-

els of glow discharge over the same range of discharge current and describe modes

associated with different cathode spots and cathode spot patterns; e.g., [81] and ref-

erences therein. We hypothesize that the same approach is applicable to spots and

spot patterns on anodes of DC glow discharges. In other words, we postulate that

spots and spot patterns on anodes of DC glow discharges can be described by a new

class of solutions, that exist in conventional models of glow discharges, alongside the

solution associated with the spotless mode of current transfer. In this work we prove

this hypothesis. Two solutions, as examples, are computed over the same, wide, range

of current. One solution describes an axially symmetric diffuse, or spotless, mode,

and the other solution describes a three-dimensional mode with azimuthal periodicity

comprising a self-organized pattern of 8 anode spots.

The outline of the chapter is as follows. The model is described in section 2.2. In

section 2.3, results of the modelling are given and discussed. Conclusions are drawn

in section 2.4.

2.2 The model

Consider a cylindrical DC glow discharge tube that is long enough that the effect of

the electrodes becomes obviated in the column. In the column the density of charged

species and electric field are independent of the axial coordinate. This invariance allows

us to choose an asymptotically accurate set of boundary conditions on a domain that

12
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contains only the region from the anode to the column. The computation domain is

adequate for an investigation of anode spots, or patterns of spots, appearing as a result

of processes of plasma-anode interaction only.

The simplest model of a glow discharge is used, which is well-known but briefly

summarized here for completeness. It comprises equations for conservation of elec-

trons and a single ion species, the transport equations, written in the drift-diffusion

approximation, and Poisson’s equation:

∂ni
∂t

+∇ · Ji = ne αµeE − β ne ni, Ji = −Di∇ni − ni µi∇ϕ,
∂ne
∂t

+∇ · Je = ne αµeE − β ne ni, Je = −De∇ne + ne µe∇ϕ,

ε0∇2ϕ = −e (ni − ne) . (2.1)

Here ni, ne, Ji, Je, Di, De, µi, and µe are number densities, densities of transport

fluxes, diffusion coeffi cients, and mobilities of the ions and electrons, respectively; α

is Townsend’s ionization coeffi cient; β is coeffi cient of dissociative recombination; ϕ

is electrostatic potential, E = |∇ϕ| is electric field strength; ε0 is permittivity of free
space; and e is elementary charge. The local-field approximation is employed, i.e.,

electron transport and kinetic coeffi cients are assumed to depend on the local electric

field only.

Let us introduce cylindrical coordinates (r, φ, z) with the longitudinal axis in line

with the axis of the discharge tube. The computation domain is a cylinder

{0 ≤ r ≤ R}, {0 ≤ φ ≤ 2π},{0 ≤ z ≤ h} where R is the tube radius and the boundary
z = h is positioned in the discharge column.

Standard boundary conditions are used for the lateral dielectric wall, r = R, de-

scribing absorption of ions and electrons, and electrical insulation:

Jin =

√
8kBTi
πmi

ni
4
, Jen=

√
8kBTe
πme

ne
2
, Jin − Jen = 0. (2.2)

Here subscript n represents the projection of the corresponding vector along n the

normal directed outside the computation domain, kB is Boltzmann’s constant, Ti and

Te are ion and electron temperatures (known parameters), mi and me are the ion and

electron masses. When a time-dependent solver is used, the last condition in equation

(2.2) is replaced by the following boundary condition

− ε0
∂ϕ

∂n
= ρs,

∂ρs
∂t

= e (Jin − Jen) , (2.3)

which describes surface charge accumulation; here ε0 is permittivity of free space and

ρs is surface charge density. If a steady-state has been reached, these conditions are

equivalent to the last condition in equation (2.2).
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Boundary conditions at the anode surface (z = 0) are

Jin =

√
8kBTi
πmi

ni
4
, Jen=

√
8kBTe
πme

ne
2
− δγJin, ϕ = 0. (2.4)

The conditions for the ions and the electrons are similar to the ones for the dielectric

wall (2.2), except for the second term on the rhs of the boundary condition for the elec-

trons (the second equation in (2.4)). This term describes secondary electron emission,

which may become relevant if the local electric field is directed from the plasma to the

anode. A parameter δ is introduced which is 1 if the local electric field is directed to

the anode, and 0 otherwise. Note that the choice of which secondary electron emission

coeffi cient, γ, to use was not clear as the anode sheath voltage and, consequently, the

energy of incident ions are small. In any case, this term produces a small effect even

for γ of order unity, since its magnitude for comparable ni and ne is of the order of

γ
√
meTi/ (miTe) with respect to the first term on the rhs of the second equation in

(2.4). The third condition in (2.4) defines the zero of potential.

The boundary z = h is positioned in the discharge column, where the charged

species densities are independent of z and the axial electric field is constant (indepen-

dent of r, φ, z):

∂ni
∂n

= 0,
∂ne
∂n

= 0,
∂ϕ

∂n
= Ez. (2.5)

Here Ez is the axial electric field; a given parameter which may be chosen to ensure

desired values of the discharge current I. The parameter h has to be large enough so

the conditions (2.5) are satisfied not just at the boundary z = h, but also in a region

adjacent to the boundary; in other words, h has to be larger than the thickness of the

near-anode region.

We hypothesize that the problem (2.1)-(2.5) admits an axially symmetric (2D)

steady-state solution, describing a spotless, or diffuse, mode of current transfer to the

anode, and three-dimensional steady-state solutions, presumably describing modes

with patterns of spots. By analogy with computed spot patterns on cathodes of DC

glow discharges, and in qualitative agreement with experimental results on anode spot

patterns, we assume that the 3D solutions are periodic in φ with the period 2π/n,

where n = 1, 2, 3, . . . , then it is suffi cient to limit the computation domain to a half-

period of the desired 3D solution: 0 ≤ φ ≤ π/n. Boundary conditions at φ = 0 and

φ = π/n are zero normal derivatives,

∂ni
∂n

= 0,
∂ne
∂n

= 0,
∂ϕ

∂n
= 0, (2.6)

so that φ = 0 and φ = π/n represent planes of symmetry of the solution considered.
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Results reported in this chapter refer to a discharge in helium under the pressure

of 5Torr. The (only) ionic species considered is He+2 . The transport and kinetic

coeffi cients are the same as in [82]. The discharge tube radius is R = 0.5mm and the

height of the computation domain is h = 5mm. It is set that γ = 0.03, Te = 1 eV, and

Ti = 300K.

The modelling was performed with COMSOL Multiphysics. Both the steady-

state and time-dependent forms of problem (2.1)-(2.6) have been solved. The Plasma

Module with a stationary solver, and a time-dependent solver, have been employed.

The Plasma Module was adapted so that it could be used in combination with a

stationary solver and supplemented with a residual-based stabilization method.

2.3 Results and discussion

One of the computed solutions reported in this chapter is 2D and describes the spotless

mode. As an example, a 3D mode with n = 8 is also reported, and it describes a mode

with eight spots. Note that the relatively high value of n permits a relatively small

computation domain and thus reduces the required RAM and computation time.

The 2D solution was computed in a standard way by means of a stationary solver.

It has been found in this work that 3D solutions do not bifurcate from the 2D solution,

in contrast to solutions describing cathodic spots and patterns of cathodic spots in arc

and glow discharges, which do bifurcate from a fundamental (generally 2D) solution.

Therefore the approach developed for the systematic computation of multiple solutions

describing spots and patterns on cathodes of arc and DC glow discharges [81] could

not be used. To find the 3D solution reported in this work, we first solved the 1D

axially symmetric and steady-state form of the problem (2.1)-(2.2), describing the

discharge column. (Analytical solutions of this 1D problem for the limiting cases

corresponding to free-fall and ambipolar diffusion [22] and a recombination-dominated

discharge were used to validate the code.) In order to obtain the 3D solution, a

solution of the 1D problem governing the column for the discharge current I = 10mA

was introduced as an initial condition for the time-dependent solver, the one solving the

time-dependent form of the problem (2.1)-(2.6) including surface charge accumulation

at the dielectric wall, equation (2.3). The computations have been performed with

the value of Ez, the input parameter describing the axial electric field at the column

boundary, corresponding to the I = 30mA, and not to 10mA. The time-dependent

solver was ran; the mismatch in Ez introduced a perturbation to the system that

resulted in an evolution to a 3D time-independent solution to the problem. The

stationary solver was then used to compute the 3D solution in a wide range of current.
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2.3.1 Current-voltage characteristics of the anode region

Consider the potential distribution in the discharge column, ϕc, (which is axially

symmetric),

ϕc (r, z) = −(z − h)Ez + ϕh (r) , (2.7)

where ϕh (r) is the distribution of potential at the computational boundary, z = h.

We define the near-anode voltage drop as the difference between the potential at the

anode (equal to zero), and the potential that is obtained by extrapolation of the column

solution (2.7) to the anode (z = 0):

U = −hEz − ϕh (r) . (2.8)

Note the second term on the rhs of this definition depends on r. In order to

remove the dependence on r and find an integral characteristic, one has, for example,

to evaluate the rhs of equation (2.8) on the axis, or edge, of the discharge tube, or take

an average value over the cross section. However, whatever choice is made is irrelevant

in so far as a graphical representation of multiple solutions is concerned: different

solutions with the same discharge current will coincide in the column to the accuracy

of a shift of potential by a constant. Therefore, whatever way is chosen to evaluate

the rhs of equation (2.8), as long as it is the same for different solutions, the difference

in U between the different solutions will be equal. We indicate for definiteness that in

this work the rhs of equation (2.8) is evaluated on the axis.

The near-anode current-voltage characteristics (CVCs) of the two solutions, exist-

ing in the same range of current, are shown in Figure 2.1. One solution describes a

3D mode that is azimuthally periodic, the other a 2D mode that is axially symmetric.

The 3D mode has a negative value of near-anode voltage in the range of the computed

current, while the 2D mode has a positive value of near-anode voltage in the range of

the computed current.

It is of interest to compare the CVCs in Figure 2.1 to the computed CVCs for

DC glow discharges with self-organized cathode spots (Figure 3.3). In the case of the

cathode spots there is an N-shaped CVC corresponding to the 2D solution, with the

CVC corresponding to the 3D solutions branching off from near the falling section of

the CVC of the 2D solution; as per the general pattern of self-organization in bistable

nonlinear dissipative systems with a positive feedback. The CVCs shown in Figure 2.1

are very different: no pronounced N-shape CVC was computed for the 2D solution,

and no bifurcations were found in a wide current range.
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Figure 2.1: Near-anode voltage drop for a wide range of currents. Solid line: 2D
mode. Dotted line: 3D mode. 2D and 3D solutions are with schematics that indicate
a characteristic distribution of electron number density on the anode.
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Figure 2.2: Electron number density on the surface of the anode. 3D solution, I=10
mA.

2.3.2 Anode spot structure

The electron number density on the surface of the anode for the 3D mode at 10mA is

shown in Figure 2.2. Electron density is organized in an azimuthally periodic pattern

of spots. The pattern is similar to that observed experimentally in Figure 1 of [65].

Densities of ions and electrons are shown in Figure 2.3 in the plane of symmetry

plane φ = 0 (a longitudinal cross section passing through the tube axis and the centre

of a spot) for I = 1mA. One can see that the electron and ion densities are distributed

in a similar way to the so-called fireballs observed experimentally in [76].

Distribution of the charged particle densities along the axial direction from the

centre of a spot to the end of the calculation domain (a 1D plot with constant φ, r),

for the 3D mode at I = 0.1mA and 35mA, are shown in Figure 2.4. There is a

region with ni > ne, i.e., an ion sheath, adjacent to the electrode. The ion densities

in the sheath are of the same order of magnitude for the two discharge currents, while

the densities of the charged particles in the column vary by more than an order of

magnitude. For I = 0.1mA, charge separation is seen also in the column, which is due

to ambipolar diffusion coming into play near the (absorbing) lateral wall.

Distribution of the electric field in Figure 2.4 is shown for 35mA. The electric field

in the ion sheath is two orders of magnitude greater than that in the quasi-neutral

region. The former points towards the anode, while the latter points away from the
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Figure 2.3: a) Electron number density in the spot. b) Ion number density in the spot.
c) Electric potential in the near-anode region. Distributions in the plane of symmetry
passing through the spot center. I = 1 mA.
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Figure 2.4: Number density of ions (solid line), number density of electrons (dashed
line), for I= 35 mA, and I=1A. Reduced electric field (dotted line) for I= 35 mA. Plot
made from centre of spot, along axial direction, to end of calculation domain. The
number density is obtained with the ideal gas law for a temperature of 300K.

anode.

It is seen in Figure 2.3 c) that near the spot, the electrode is biased below the

potential of adjacent plasma, and it is seen from Figure 2.4 that quasi-neutral plasma

is extended close, up to 1µm, to the electrode. In the spotless mode at the same

current, the electrode potential is above that of the adjacent plasma and the electron

sheath extends 50µm from the electrode. It is seen from Figure 2.3 c) that the electrode

has a positive bias with respect to the adjacent plasma large distances from the spot;

skipping for brevity results on the charge particle distribution, we only note that there

is an electron sheath adjacent to the electrode.

2.3.3 Near-anode physics

The distribution of current density and electric field along the anode surface in the

plane of symmetry φ = 0 (the longitudinal cross section that passes through the centre

of a spot) is shown in Figure 2.5. Plots are included for two different discharge currents.
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Figure 2.5: Distribution of axial current density and axial electric field on the surface
of the anode in the plane of symmetry passing through the spot center. Large negative
values of electric field are not shown.
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Figure 2.6: Distribution of the number density of ions in the plane of symmetry passing
through the spot center. Arrows: unit vector of current density. I=1 mA.

The current density has a large magnitude and is negative inside the spot, and turns

positive outside. The spot behaves like a mini-cathode or, as one could say, operates

as a unipolar glow discharge.

The direction of current density in the plane of symmetry is shown in Figure 2.6.

For reference the distribution of the ions number density is shown as well. The unipolar

glow discharge is clearly seen.

The electric field at the anode in Figure 2.5 is seen to be both negative inside the

spot and positive outside for 35mA; it is negative everywhere for 1mA. Directions of

the electric field at the anode and of current density from the anode inside and outside

the spot are summarized in Table 2.1. For the 2D spotless mode, Ez > 0, jz > 0 for

all values of current.

Current 3D, within the spot 3D, outside the spot

1 mA Ez < 0, jz < 0 (cathode) Ez < 0, jz > 0 (field-reversal anode)

35 mA Ez < 0, jz < 0 (cathode) Ez > 0, jz > 0 (regular anode)
Table 2.1. Physics of the near-anode region for the 3D solution.

2.3.4 Additional comments

No double layers were found during this modelling. However, this modelling was per-

formed at a higher pressure than the pressure of the experiments that revealed double

layers. An interesting question is whether the self-organised anode spots reported here
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would contain double layers at lower pressure, or if they are distinct phenomena.

The modelling reported in this work should not be interpreted as an attempt to

quantitatively describe parameters of anode spots. Merely, the aim was to prove

the possibility of self-consistently describing self-organized anode spots on the basis of

multiple solutions existing in the same range of discharge currents, which was achieved.

The model may be used for qualitative analysis, and certainly some interesting trends

have emerged. Nevertheless it is well known that a detailed account of the complex

plasma chemistry of a helium discharge, and the nonlocality of electron energy ought

to be included. Another aspect that needs to be improved is a description of the

near-electrode sheath, which is collisionless inside the spot.

Bombardment on the anode by low-kinetic energy ions occurs inside the spots.

An interesting hypothesis is that the ions incident on the anode contribute to or are

responsible for the cancer-inhibiting effect reported in [83].

2.4 Conclusions

For the first time, a self-organized pattern of spots of plasma on an anode was computed

self-consistently. A new class of stationary solutions, describing anode spots, was found

in the conventional DC glow discharge model. The 3D solution was found to exist in

the same range of currents as a 2D solution describing a spotless mode of current

transfer.

On the one hand, there are similarities between the computed anode spots and

the spots on cathodes of arc and DC glow discharge: both are described by multiple

steady state solutions and reveal azimuthal periodicity. On the other hand, the spots

on the anode are different to the spots on the cathode in following ways: the solution

describing the spotless mode does not contain a pronounced N-shaped current-voltage

characteristic; no bifurcations were found in a wide range of currents, i.e., the anode

spots were found to exist isolated from the 2D spotless mode. The anode spots are

apparently related to the change in the sign of the near anode voltage.

Inside the spots the anode behaves like a mini-cathode, in that the sign of the

current density and electric field is reversed. In other words, anode spot operates as a

unipolar glow discharge.



Chapter 3

Modelling cathode spots in glow
discharges in the cathode
boundary layer geometry

3.1 Introduction

The vast majority of the experiments [7, 46—54] into patterns on glow cathodes have

been performed in a discharge device comprising a flat cathode and a ring-shaped

anode, separated by a dielectric (cf., e.g., Figure 1 of [54]); this discharge configuration

is called cathode boundary layer discharge (CBLD) by the authors of the experiment.

However, the modelling has been performed up to date for discharges with parallel-

plane electrodes only [42, 43, 53, 56—58]. The question of how the shape of the anode

affects the pattern of self-organization has so far not been addressed. Furthermore,

the effect over 3D spots of absorption of the charged particles by a dielectric surface

has not been investigated in full due to computational diffi culties [57].

In this work, 3D modelling of cathode spots is reported for the first time in CBLD,

and the self-organization is computed with a full account of absorption of charged

particles at the dielectric surface. The outline of the chapter is as follows. The model

is described in section 3.2. In section 3.3.1 the effect over the fundamental mode of the

discharge radius, the thickness of the cathode and dielectric, and of a dielectric surface

that reflects charged particles is investigated. In section 3.3.2 examples of computed

3D modes are given and compared to their experimental counterparts, the effect on 3D

modes of a dielectric surface that reflects charged species is also analyzed. In section

3.4 conclusions are drawn.

24
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Figure 3.1: Configuration of a cathode boundary layer vessel. AG is the axis of
symmetry of the vessel.
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3.2 Model and Numerics

The model employed in this work is the most basic self-consistent model of glow

discharge. Although the model is very well-known, it is described here for the sake

of completeness. The model comprises equations for conservation of electrons and a

single ion species, written in the drift-diffusion transport approximation, and Poisson’s

equation:

∇ · Ji = ne αµeE − β ne ni, Ji = −Di∇ni − ni µi∇ϕ,

∇ · Je = ne αµeE − β ne ni, Je = −De∇ne + ne µe∇ϕ,

ε0∇2ϕ = −e (ni − ne) . (3.1)

Here ni, ne, Ji, Je, Di, De, µi, and µe are number densities, charged species transport

fluxes, diffusion coeffi cients, and mobilities of the ions and electrons, respectively; α

is Townsend’s ionization coeffi cient; β is coeffi cient of dissociative recombination; ϕ

is electrostatic potential, E = |∇ϕ| is electric field strength; ε0 is permittivity of free
space; and e is elementary charge. The local-field approximation is employed (i.e.

electron transport and kinetic coeffi cients are assumed to depend on the local electric

field only).

Boundary conditions at the cathode and anode are written in the conventional

form. Diffusion fluxes of the attracted particles are neglected as compared to drift;

the normal flux of the electrons emitted by the cathode is related to the flux of inci-

dent ions in terms of the effective secondary emission coeffi cient γ, which is assumed to

characterize all mechanisms of electron emission (due to ion, photon, and excited atom

bombardment) [2]; density of ions vanishes at the anode; electrostatic potentials of

both electrodes are given. The dielectric surface is electrically insulating, and absorbs

the charged particles (i.e. case i) ni = ne = 0); for comparison, some solutions were

computed for the case of a reflecting dielectric surface (i.e. case ii) ∂ni
∂r =

∂ne
∂r = 0).

With the computational domain from Figure 3.1, the boundary conditions read

cathode (AB) : ∂ni
∂z = 0, Jez = −γJiz, ϕ = 0 ;

anode (CDE) : ni = 0,
∂ne
∂n = 0 , ϕ = U ;

dielectric (BC) :
i) ni = ne = 0

ii) ∂ni
∂r =

∂ne
∂r = 0

, Jer − Jir = 0;

numerical boundary (EFG) : ni = ne = 0 ,
∂ϕ
∂n = 0.

(3.2)

Here U is the discharge voltage, the subscripts r and z denote radial and axial projec-

tions of corresponding vectors, and ∂/∂n means a normal derivative. The lengths DE

and AG are large enough so that boundaries EF and FG do not affect the solution;
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simulations were run also with a smaller calculation domain (lengths DE and AG were

reduced) and no significant differences in the solutions were observed. The results

reported in this work refer to h = 0.5mm, ha = 0.1mm, and R = 0.5mm unless

indicated otherwise.

The control parameter can be either discharge voltage U or discharge current I,

depending on the slope of the current voltage-characteristics (CVC) U (I). In the first

case, the value U of potential on the anode is set as the input parameter. In the second

case, the problem is supplemented by a requirement that the discharge current takes

a prescribed value and U is treated as an unknown that has to be found as a part

of the solution; the calculation in this case is performed using a weak formulation in

COMSOL Multiphysics.

Results reported in this chapter refer to a discharge in xenon under the pressure of

30Torr. The (only) ionic species considered is Xe+2 . The transport and kinetic coeffi -

cients are the same as in [57]. Note that a more detailed model (one that also took into

account both atomic and molecular ions, excited atoms, excimers, stepwise ionization,

ionization of excimers and non-locality of electron energy) was used for investigation of

axially symmetric self-organized patterns in the parallel-plane configuration [57] and

gave patterns qualitatively similar to those predicted by the relatively simple model

described in this section. On the other hand, the simple model results in significantly

reduced computation time, which was essential when performing 3D modelling. There-

fore, the simple model was seen as adequate for the purpose of investigating the effect

of CBL discharge configuration.

The problem (3.1) to (3.2) admits multiple solutions describing different discharge

modes. One such mode exists for all ranges of current, it is 2D (axially symmetric)

and termed fundamental, this is routine to calculate. 3D modes bifurcate from (and

rejoin) the fundamental mode and are termed non-fundamental modes.

To calculate non-fundamental modes, one first locates points of bifurcation on the

fundamental mode by means of linear stability analysis. The procedure is discussed

in detail in [43] and in brief may be described as follows. Axially symmetric 2D sta-

tionary solutions are found for the problem (3.1)-(3.2) for a wide range of currents.

Azimuthally periodic perturbations with an exponential time dependence are intro-

duced. The time-dependent form of problem (3.1)-(3.2) is then linearized and assumes

the form of an eigenvalue problem for a set of linear homogeneous differential equa-

tions, the perturbation increment λ being the eigenparameter. For each current and

each azimuthal period, the problem is solved by means of the eigenvalue solver of

COMSOL Multiphysics. Bifurcations are found at currents where λ vanishes.

Next a 3D calculation domain is created by rotating the 2D domain ABCDEFG

from Figure 3.1 about the axis AG of symmetry of the discharge vessel, by an angle
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equal to half of the azimuthal period of the 3D mode being sought. The beginning of

the non-fundamental mode is then searched for on the fundamental mode, with the

3D calculation domain, in the vicinity of the bifurcation point predicted by the linear

stability analysis. Small azimuthally periodic perturbations are introduced to the den-

sities of charged species at the bifurcation point; the stationary solver’s iterations will

eventually converge to the 3D mode. The remainder of the 3D mode is straightforward

to calculate.

The above procedure was realized using stationary and eigenvalue solvers from

the commercial product COMSOL Multiphysics. The meshes used were considered

appropriate when after increasing their refinement the solutions were not significantly

affected. The time taken by the stationary solver to find convergence to one of the

most computationally intensive 3D solutions is around 1 hour, with a computer with

a Intel Core i7-4770 CPU at 3.4GHz and 32GB of RAM.

3.3 Results

3.3.1 Fundamental mode

In Figure 3.2, the CVC of the fundamental mode is displayed in four sets of conditions,

labeled 1 to 4 in the Figure. Surprisingly, two turning points and a loop are present

on the CVC corresponding to the baseline conditions (h = 0.5mm, ha = 0.1mm, and

R = 0.5mm, absorbing dielectric surface), line 1.

The whole current range in Figure 3.2 can be divided into three regions, marked I,

II, III. At the top of the Figure there is an illustration of the characteristic distribution

of current density on the cathode surface for each region. The color range shown in

the bar is used also for the rest of the document. The general pattern of evolution of

the fundamental mode with increasing current is as follows. In region I, corresponding

to the Townsend discharge, the current is distributed on the cathode in the form of a

ring. In region II, the ring of current grows thicker with increasing current. In region

III, corresponding to the abnormal discharge, the discharge fills most of the cathode

surface.

In the case represented by line 1, a pattern with a central spot appears on the

section between the turning points, as indicated in the Figure. This transition is

accompanied by a loop in the CVC. The loop is absent in the CVC of cases 2 and 3; the

larger radius and the reflecting dielectric surface, respectively, prevent the transition

from a ring to central spot. The loop is also absent in the CVC of case 4. The CVC

of cases 1, 2 and 4 (the ones with absorbing dielectric surface) have small humps in

range I, although this cannot be seen in the scale of Figure 3.2.



3. Modelling cathode spots in glow discharges in the cathode boundary
layer geometry 29

Figure 3.2: Fundamental mode. 1: baseline conditions. 2: h = 0.5mm, ha = 0.1mm,
R = 1.5mm. 3: baseline geometry, reflecting dielectric surface. 4: h =0.25mm, ha =
0.25mm, R = 0.375mm.
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Figure 3.3: Solid: fundamental mode (mode 1 of figure 2). Dashed: mode a3b3.
Circles: points of bifurcation.
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3.3.2 3D modes

Figure 3.3 displays the CVC of the fundamental mode for the baseline conditions,

points of bifurcation of 3D modes, and an example 3D mode. Each pair of points ai
and bi designates from where a 3D mode branches off from and rejoins the fundamental

mode. Mode aibi possesses period 2π/i, meaning that a1b1 possesses azimuthal period

2π, mode a2b2 possesses azimuthal period π, and so on. Bifurcation points b1 to b4
virtually coincide. Points b5 and b6 are positioned on the section between the turning

points. The 3D modes branch off and rejoin the fundamental mode in a palindromic

order along current, which conforms to previous modelling of discharges with parallel-

plane electrodes.

As an example, the CVC of mode a3b3 is shown in Figure 3.3. (The schematic

in the figure illustrates the pattern of spots associated with this mode.) The CVC

manifests a plateau between 60Am−2 and 300Am−2, which is a manifestation of the

normal current density effect. Note that the plateau also is present in the computed

mode of the same azimuthal period for a vessel with parallel-plane electrodes and

reflecting dielectric surface [58].

CVCs of several different modes would be diffi cult to distinguish in Figure 3.3.

A more convenient representation is shown in Figure 3.4: the fundamental and four

non-fundamental modes are mapped in the plane (〈j〉 , jc), where jc is the value of
current density at the position r = 0.4 mm on the upper vertical radius as marked by

a cross on one of the images in Figure 3.4. Note that the value r = 0.4 mm coincides

with the radius of the ring associated with the fundamental mode in the Townsend

regime; it was found that such a choice ensures maximum distinction between the

modes. Following the fundamental mode from low to high currents, it is seen that jc
decreases while the central spot is forming, then it increases as the ring mode forms,

thus yielding a limp Z-shape on the bifurcation diagram. Modes a5b5, a6b6 possess

turning points.

In Figure 3.5 the evolution is shown of patterns of current density on the cathode

associated with modes a3b3, a4b4, a5b5, a6b6 from Figure 3.4 as discharge current is

changed. Let us consider first the evolution of the patterns for mode a3b3 which is

shown in Figure 3.5a). The state a)i) is positioned in the vicinity of the bifurcation

point b3, the pattern is of three diffuse elongated spots, slightly deforming into a 3D

structure with the period of 2π/3. At a)ii) the three spots have become more distinct,

intense and bean-shaped. The spots then become circular, and move farther from

the center of the cathode as seen in state a)iv). The spots then once more become

bean-shaped, then once again gain a triangular type structure as in state a)v). At

state a)v) a central triangle-shaped ‘cold spot’is present. Continuing along the mode
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Figure 3.4: Bifurcation diagram. Solid: fundamental mode (mode 1 of figure 2).
Dashed: modes a3b3, a4b4, a5b5. Dotted: mode a6b6. Circles: points of bifurcation.
‘+’on the image representing the mode a4b4 indicates the point on cathode surface
where the value jc is taken.
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Figure 3.5: Evolution of patterns of current density on the cathode associated with 3D
modes of figure 4: (a) mode a3b3, (b) mode a4b4, (c) mode a5b5 and (d) mode a6b6.



3. Modelling cathode spots in glow discharges in the cathode boundary
layer geometry 34

with decreasing current, the triangle shaped region becomes less sharp, and the whole

pattern becomes more like the ring-shaped distribution present at a3.

The evolution of the patterns associated with modes a4b4, a5b5, and a6b6, is shown

in Figures 3.5b-d, respectively, follows the same trend as mode a3b3: first the ring

is transformed into elongated bean-shaped spots and then circular spots, then they

migrate to a different radius, and there, from circular spots they turn into bean-shaped

spots and then merge into a different ring. No 3D modes with central hot spots were

found in the present work, while in previous modelling they were; e.g. [58]. The

images in Figure 3.5 can be compared to experimentally observed patterns of spots,

Figure 3.2 of [54]. The computed evolution from the abnormal mode into mode a4b4,

comprising four spots (Figure 3.5b), is in good agreement with the experimentally

observed transition between the abnormal mode into a mode comprising four spots.

In Figure 1 of [54], it can be seen how the modes appear in the experiment: starting

from the abnormal mode and reducing discharge current, a mode comprising four spots

appears. As current is further reduced, modes comprising five and six spots appear.

Further reducing current from the mode with six spots, the discharge goes back to

modes with five, four, three and a ring spot. In the modelling, cf. Figure 3.3, starting

from a state in the abnormal mode and following the fundamental mode in the direction

of low currents, the bifurcation point b1 of mode a1b1, comprising one spot, appears

first. The next bifurcation point to appear is b2 of mode a2b2, comprising two spots;

and so on until bifurcation point b6 of mode a6b6, comprising six spots, following the

same trend observed in the experiment. On further following the fundamental mode in

the direction of low currents, eventually the bifurcation point a5 of mode a5b5 appears;

and so on until a1 of mode a1b1, again following the same trend as in the experiment.

In Figure 3.6, typical distributions of discharge parameters along a cross section

of a hot spot are shown. Figures 3.6 a)-c) refer to state i) in Figure 3.5b) and Figures

3.6 d)-f) refer to state iv). The effect of normal current density is seen in Figure 3.6a)

and 3.6c).

The patterns of current density on the cathode shown in Figure 3.3-3.5 are essen-

tially the same as in simulations for plane-parallel electrode configurations; e.g. Figure

5 of [58]. The difference is that the spots in Figure 5 of [58] are centred at the periphery

of the cathode, while the 3D spots of the present work are centred and formed totally

within the cathode. The latter is what is observed in the experiments [7, 46—54]. The

reason of this difference is in different boundary conditions at the dielectric surface:

while modelling [58] has been performed for the reflecting surface (boundary condition

ii) in the third line of equation (3.2)), the 3D spots reported in the present work have

been computed for the absorbing surface (boundary condition i)). Unsurprisingly, the
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Figure 3.6: Cross section view of a 3D hot spot associated with the mode a4b4 at
different currents. The cross section plane passes through the centre of the spot. (a),
(d): Ion density. (b), (e): Electron density. (c), (f): Potential.
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assumption of absorbing dielectric surface, being more realistic by itself, gives results

with better agreement with the experiment.

3.4 Conclusions

Self-organized 3D spot modes are reported for a typical configuration of cathode

boundary layer discharge (h = 0.5mm, ha = 0.1mm, and R = 0.5mm) in xenon

at the pressure of 30 Torr. The general form of the computed self-organized patterns

is similar to those computed previously in the parallel-plane configuration and to those

observed in the experiment in the sense that all of them comprise axially symmetric

ring spots or circular arrangements of 3D spots. This is consistent with experimental

evidence [49] that similar self-organized patterns appear in both electrode configura-

tions.

Simulations of 3D spot patterns with the dielectric surface fully absorbing the

charged particles reveal spots not centered at the periphery of the cathode, but rather

located inside the cathode, as they are in the experiment. It has been found that

there is a palindromic series of the number of spots with discharge current, which is

consistent with observations of switching between modes with different patterns in the

experiment [54].



Chapter 4

Bifurcations in the theory of
current transfer to cathodes of
DC discharges and observations
of transitions between different
modes

4.1 Introduction

As previously stated, the theoretical description of spots and spot patterns on elec-

trodes of dc glow and arc discharges is based on the multiplicity of solutions: an

adequate theoretical model must in some cases allow multiple steady-state solutions

to exist for the same conditions (in particular, for the same discharge current I), with

different solutions describing the spotless (diffuse) mode of current transfer and modes

with different spot configurations.

Some of the multiple solutions may merge, or become identical at certain values of

the control parameter; a bifurcation, or branching, of solutions. Bifurcations of differ-

ent kinds of steady-state solutions have been encountered in the theory and modelling

of current transfer to cathodes of dc glow and high-pressure arc discharges [43, 63].

An understanding of these bifurcations is crucial for the computation of the whole

pattern of multiple solutions and an analysis of their stability. The existence of mul-

tiple solutions and their bifurcations, in the case of current transfer to cathodes of

DC glow discharges, is a consequence of a strong positive feedback, which originates

in the increasing dependence of the rate of ionization on electric field. In the case of

37



4. Bifurcations in the theory of current transfer to cathodes of DC
discharges and observations of transitions between different modes 38

current transfer to cathodes of arc discharges, the existence of bifurcations is a result

of a strong positive feedback originating in the dependence of the density of the energy

flux from the plasma to the cathode surface on the surface temperature [63].

In contrast, multiple steady-state solutions describing different modes of current

transfer to anodes of glow microdischarges computed recently [84] do not reveal bi-

furcations. The existence of multiple solutions in this case is related to the change of

sign of the anode sheath voltage.

Thus, the existence, or not, of bifurcations of steady-state solutions, describing

different modes of current transfer to electrodes of dc glow and arc discharges, is

related to the underlying physics and is therefore of significant interest. Unfortunately,

the question of whether bifurcations exist has not been addressed in experimental

publications. (Although there are interesting results concerning bifurcations in the

pattern of oscillations developing in a dc-driven semiconductor-gas discharge system

[85]; see also [86, 87] and review [88].) It is therefore of interest to analyze available

experimental observations of different modes of current transfer to electrodes of dc

glow and arc discharges with the aim to eventually identify bifurcations.

The outline of the chapter is as follows. In Sec. 4.2, the general scenarios of changes

between modes on electrodes of dc gas discharges and their relation to bifurcations of

steady-state solutions are analyzed. Transitions of modes on cathodes of arc, and dc

glow, discharges are considered in Secs. 4.3 and 4.4, respectively. The conclusions are

summarized and directions of future work are discussed in Sec. 4.5.

4.2 Scenarios of transitions between different modes of
current transfer to electrodes of dc discharges and
their relation to bifurcations

Bifurcations of steady-state solutions manifest in experiments as transitions between

modes with different spot patterns, which occur as the discharge current I is varied.

One can distinguish two scenarios for transitions between modes with different

spot patterns. First, there are quasi-stationary, i.e., continuous, and, consequently,

reversible transitions between states where distributions of luminosity over the elec-

trode surface possess different symmetries. Second, there are transitions that occur

abruptly even for very small variations of I. Let us consider first the quasi-stationary

transitions. All parameters of the discharge, including the discharge voltage U , vary

with I continuously. In particular, the measured current-voltage characteristic (CVC)

U (I) is continuous. However, U (I) is not smooth at I = I0, where I0 is the value of I

where the distribution of luminosity over the electrode surface changes its symmetry.
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This transition is caused by a symmetry-breaking bifurcation that occurs at I = I0,

with stable states existing on both sides of the bifurcation point.

The above scenario may be illustrated by the following example. If the discharge

vessel is axially symmetric, then the mathematical problem describing steady-state

current transfer to the electrode admits an axially symmetric (2D) solution, describing

the spotless mode of current transfer, and a 3D solution, describing a mode with a

spot. (More precisely, there is a family of 3D solutions which differ one from the other

by the azimuthal position of the spot. Other families of 3D solutions, describing modes

with several spots, may exist as well.) It is a usual situation that the 3D spot-mode

solution branches off from the 2D spotless-mode solution; a symmetry-breaking, or

pitchfork, bifurcation. Note that a brief summary of information from the bifurcation

theory relevant to this work can be found in Appendix of [43]; a further discussion can

be found, e.g., in reviews [63, 89].

Let us designate by I0 the value of discharge current at which the bifurcation occurs

and assume for definiteness that the 2D solution is stable for I > I0 and unstable for

I < I0. It may happen that the 3D solution branches off into the range I < I0, where

the 2D solution is unstable; a supercritical bifurcation. According to the general trends

of the bifurcation theory, the 3D solution is stable at least in the vicinity of the state

I = I0 in this case. If such a situation is investigated experimentally and I in the

experiment exceeds I0, the discharge will operate in the 2D spotless mode and the

luminosity distribution over the electrode surface will be axially symmetric. As I is

reduced down to values below I0, the luminosity distribution starts deviating from

being axially symmetric and the deviation grows proportionally to
√
I0 − I: a 3D spot

starts being formed.

Let us now consider abrupt transitions. The initial and final states may be of the

same or different symmetries, e.g., transitions from a 2D spotless state to states with

a well developed 3D spot or a well developed 2D ring spot are both included in the

consideration. Let us designate by I0 the value of I at which the transition occurs.

Since such transitions are accompanied by jumps in the discharge parameters, the

measured CVC U (I) is discontinuous at I = I0.

There are two possible reasons for abrupt transitions. One of them is the loss

of stability of the mode that existed before a transition, occurring at I = I0. If an

abrupt transition occurs in a monotonic way, i.e., without temporal oscillations of

the electrode luminosity and discharge parameters, in particular, discharge voltage,

then the increment of the perturbations, against which the stability is lost and which

normally have a symmetry lower than that of the initially existing mode, is real and

vanishes at I = I0. The latter means that two steady-state solutions exist in the

vicinity of the state I = I0: a solution describing the initially existing mode and a
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solution of a lower symmetry, describing the mode with the perturbations. Hence,

a pitchfork bifurcation occurs at I = I0. In order to illustrate this scenario, let us

return to the above example and consider the case where the 3D spot-mode solution

branches off into the range I > I0, where the 2D spotless-mode solution is stable; a

subcritical bifurcation. In this case, the 3D solution is usually unstable in the vicinity

of the state I = I0; e.g., Appendix of [43]. If the discharge operates in the spotless

mode in the experiment and I is reduced down to values below I0, the discharge will

abruptly switch to another mode and this switching will occur in a monotonic way,

i.e., without temporal oscillations.

Let us now consider the case where an abrupt transition is accompanied by tem-

poral oscillations. The increment of the perturbations against which the stability is

lost is imaginary at I = I0 in this case. Hence, no steady-state solution bifurcates

from the initially existing mode at the state I = I0; i.e., the transition is unrelated to

a bifurcation.

The other possible reason of abrupt transitions is that the mode that existed before

the transition has a turning point at I = I0. In other words, this mode has two distinct

branches, which exist in the range I ≤ I0 (or I ≥ I0) and merge at I = I0, so the mode

does not exist for I > I0 (or, respectively, I < I0). One can say that the mode has

reached the limit of its existence region at I = I0 and turned back; a fold, or saddle-

node, bifurcation. If the discharge operates on one of the branches of this mode and

the current is increased (or, respectively, decreased), the discharge will abruptly switch

to another mode as the value I = I0 has been reached. Given that the increment of the

relevant instability vanishes at I = I0 [43], one can expect that the switching occurs

in a monotonic way.

In summary, quasi-stationary transitions between states with different symmetries

are related to symmetry-breaking (pitchfork) bifurcations of steady-state solutions;

abrupt transitions are related to bifurcations of steady-state solutions provided that

they occur in a monotonic way, i.e., without temporal oscillations, and the relevant

bifurcations are pitchfork or fold.

Discharge vessels are axially symmetric in many experiments. Pitchfork bifurca-

tions of only two types may occur in such configurations [43, 63]. First, it is breaking

of axial symmetry, i.e., branching of a 3D mode, where the distribution of luminosity

over the electrode surface is periodic in the azimuthal angle with an arbitrary period

(2π, or π, or 2π/3, or π/2 etc), from a 2D mode, where the distribution of luminosity

is axially symmetric. Second, it is doubling of period with respect to the azimuthal

angle, i.e., branching from a 3D mode with one of the periods π, π/2, π/3, π/4 etc

of a 3D mode with double this period. It follows, in particular, that transitions with

changes of symmetry of other types cannot occur through pitchfork bifurcations of
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steady-state solutions, and are always abrupt.

The above general reasoning is valid for mode changes on electrodes of any dc

discharges. In the next sections, this reasoning will be applied to particular cases of

cathodes of arc and dc glow discharges.

4.3 Mode transitions on cathodes of arc discharges

In the case of refractory cathodes of high-pressure arc discharges, the theory based on

the concept of multiple solutions has gone through a detailed experimental validation

by means of different methods, such as spectroscopic measurements, electrostatic probe

measurements, electrical and pyrometric measurements, and calorimetry; see, e.g.,

[37, 90—92], review [93] and references therein, and also the recent review [94]

The theory of current transfer to cathodes of arc discharges is simpler from the

theoretical point of view than the theory for the case of glow discharge. The eigenvalue

problem governing the stability of steady-state solutions against small perturbations is

self-adjoint (Hermitian) in this case [39]. This means, in particular, that the spectrum

of perturbations is real, a conclusion that was confirmed by numerical calculations

[38, 95]. It follows that all abrupt transitions are monotonic in time. Indeed, no

oscillations of arc voltage and luminosity of the cathode surface is observed in the

experiments on transitions between diffuse and spot modes on arc cathodes; e.g.,

[91, 96—98]. Hence, all abrupt transitions are related to bifurcations of steady-state

solutions. In more general terms, any transition between different modes, be it quasi-

stationary or abrupt, is related to bifurcations of steady-state solutions in the case of

arc cathodes.

In the simplest case of a rod cathode with a flat tip, a 2D diffuse mode of current

transfer occurs in the experiment at high currents and a 3D mode with a spot at

the edge of the cathode occurs at low currents, as schematically (infact, the curves

correspond with solutions reported in [99]) shown by solid lines in Figure 4.1. (Note

that patterns with several spots have been observed on cathodes of high-pressure arc

discharges in more complex arrangements, such as magnetically rotating arcs [100].)

The transitions between the two modes are shown by the arrows in Figure 4.1; they

are abrupt without temporal oscillations and manifest hysteresis. In agreement with

the reasoning of Sec. 4.2, these transitions represent an indication of the presence of

pitchfork or fold bifurcations of steady-state solutions.

The latter conclusion may be compared with theoretical results [38, 39]. The theory

predicts that the diffuse mode and the 3D mode with a spot at the edge of the cathode

are the only modes that contain stable sections. The stable and unstable sections of

each mode are schematically shown in Figure 4.1. In the case of the diffuse mode,
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Figure 4.1: Schematic of current-voltage characteristics (CVCs) of the diffuse mode
of current transfer to rod cathodes of high-pressure arc discharges and of the mode
with a spot at the edge of the cathode. The sections shown by the solid lines and the
transitions shown by the arrows are observed in the experiment.
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these sections are separated by the state B, where a subcritical pitchfork bifurcation

occurs. In the case of the spot mode, the stable and unstable sections are separated

by the turning point K, where a fold bifurcation occurs. Thus, the accurate theory

indicates that the transition from the diffuse mode to the spot mode is related to the

pitchfork bifurcation and the return transition is related to the fold bifurcation, in

agreement with the reasoning of Sec. 4.2.

4.4 Mode transitions on cathodes of dc glow discharges

4.4.1 State-of-the-art of the theory

In the case of dc glow discharges, multiple solutions have been shown to exist even in

the most basic models and the solutions computed up to now describe many features

of the patterns observed; e.g., [63] and references therein and [101]. In particular,

the modelling has shown that self-organization on cathodes of glow microdischarges

can occur not only in xenon, but also in other plasma-producing gases; a prediction

which has been confirmed by subsequent observations of microdischarges in krypton

[53] and argon [102]. On the other hand, the comparison between the theory and the

experiment has been merely qualitative up to now.

The eigenvalue problem governing stability of steady-state solutions against small

perturbations is not self-adjoint for glow cathodes. Therefore, the spectrum of pertur-

bations need not be real. Indeed, a numerical investigation of stability of 2D modes

[103] has given a spectrum that contains both real and complex eigenvalues (and is

considerably more elaborate than the spectrum in the case of arc cathodes). It follows

that abrupt transitions between different spot patterns may be oscillatory, in contrast

to the case of arc cathodes. Note that this conclusion is consistent with the experi-

ment: for example, temporal oscillations of the discharge voltage have been observed

in the course of transition from the Townsend to normal discharge [104—106].) Such

transitions are unrelated to bifurcations of steady-state solutions.

4.4.2 Analyzing experimental observations

A wealth of self-organized spot patterns and transitions between different patterns

has been observed on cathodes of dc glow microdischarges [7, 46—54, 107, 108]. It

follows from Sec. 4.2 that a detailed experimental investigation of transitions between

different spot patterns, performed with suffi ciently small steps in I and a suffi ciently

high temporal resolution, is needed to unambiguously identify transitions that are

related to bifurcations of steady-state solutions. Unfortunately, such investigations

seem to be absent. The most detailed data are published in the work [54], where the
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discharge current was adjusted on the microampere scale. The question as to whether

the observed transitions are quasi-stationary or abrupt with or without oscillations

was not studied. However, transitions between states of different symmetries that

seem to be continuous (i.e., quasi-stationary) have been observed; e.g., transitions

between states with a large spot occupying the central part of the cathode and a

ring-like arrangement of four spots [54, Fig. 2], or between a ring spot and a ring-like

arrangement of five spots [54, Fig. 5]. Question arises as to if these transitions can

occur through pitchfork bifurcations of steady-state solutions, according to the first

scenario described in Sec. 4.2.

In more general terms, one can try to identify in the observations [7, 46—54, 107,

108] all changes of symmetry that may occur through pitchfork bifurcations of steady-

state solutions. There is a possibility that these transitions can be realized in a quasi-

stationary way, although this is not always the case as exemplified by the transition

depicted by the vertical arrow above state B in Fig. 1. On the contrary, transitions

that are unrelated to pitchfork bifurcations of steady-state solutions surely cannot be

realized in a quasi-stationary way, i.e., are always abrupt.

The discharge vessels are axially symmetric in most of the above-cited experiments.

If follows from Sec. 4.2 that pitchfork bifurcations of only two types may occur in such

configurations: breaking of axial symmetry and doubling of period with respect to

the azimuthal angle. Hence, one should try to identify transitions with changes of

symmetry of these two types in the available experimental data [7, 46—54, 107, 108].

If such transitions exist, one should try to find the relevant bifurcations by means of

numerical modelling. If the bifurcations have been found, one will be able to compare

the computed patterns in the vicinity of the bifurcation points with the patterns

observed in the experiments.

Most of the transitions reported in [7, 46—54, 107, 108] do not belong to either

of the two above types. None of these transitions can occur through bifurcations of

steady-state solutions, hence these transitions cannot be realized in a quasi-stationary

way. In particular, this applies to successive transitions between ring arrangements of

4, 5, 6, 5, 4, and 3 spots shown in, e.g., [54, Fig. 2] and [48, Fig. 2]. It is interesting to

point out that this conclusion is consistent with the experimental observation that the

transition between the ring arrangements of 6, 5, and 4 spots was irreversible: it could

be realized when the current is lowered, but attempts to increase the current, when

the discharge was operating in these modes, led to the extinction of the discharge [48].

However, transitions that do belong to one of the two possible types of pitchfork

bifurcation (with either a breaking of axial symmetry, or a doubling of period with

respect to the azimuthal angle) have been observed and are listed in Table 4.1. Note

that the two aforementioned transitions observed in [54] that appear to be quasi-
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stationary (those between states with a large spot occupying the central part of the

cathode and a ring-like arrangement of four spots [54, Fig. 2] and between a ring

spot and a ring-like arrangement of five spots [54, Fig. 5]) exhibit a breaking of axial

symmetry and therefore can indeed occur through pitchfork bifurcations; accordingly,

these transitions are listed in the table.

Higher-symmetry mode Lower-symmetry mode Source

Symmetry Pattern Symmetry Pattern

2D Central spot 3D, π 2 symmetric spots [48, Fig. 5]

2D Central spot 3D, π/2 Ring of 4 spots [48, Fig. 2], [54, Fig. 2]

2D Ring spot 3D, 2π/5 Ring of 5 spots [54, Fig. 5]

2D
Central spot,

ring spot
3D, 2π/5

Central spot,

ring of 5 spots
[54, Fig. 6]

3D, π/3
Ring of

6 spots
3D, 2π/3

2 rings of 3

spots each
[109]

Table 4.1. Transitions between modes with different spot patterns observed on

cathodes of glow microdischarges that are potentially related to bifurcations.

Numbers in the columns ’Symmetry’in cases of 3D modes designate azimuthal

period.

The bifurcation that can be responsible for the second transition in Table 4.1

was encountered in [101]. The period-doubling bifurcation that can be responsible

for the fifth transition has been encountered as well, although for plasma-producing

gases different from xenon, which was used in the experiments [109]: helium [57,

Fig. 9] and krypton [53, Fig. 2]. In this work, these bifurcations are numerically

investigated in detail and the computed patterns in the vicinity of the bifurcation

points are compared with the experiment. Also reported in this work is the finding

and analysis of the bifurcation that corresponds to the third transition in Table 4.1,

for which experimental images taken with a very fine step over discharge current are

available [54, Fig. 5].

4.4.3 Numerical modelling

The models

Two numerical models of glow discharges are used in this work, one of them being basic

and the other one more detailed. Both models follow standard lines. For completeness,

a summary of differential equations, boundary conditions, and data used for transport
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and kinetic coeffi cients is given in Appendix. In brief, the models may be described as

follows.

The detailed model comprises equations of conservation of electrons, singly charged

atomic ions, singly charged molecular ions, excimers, and an effective species for excited

atoms that combines all of the excited states of the 6s manifold (6s[3/2]2, 6s[3/2]1,

6s′[1/2]0, and 6s′[1/2]1), Poisson’s equation, and an equation for the conservation of

electron energy. Transport equations for charged-particle species and electron energy

density are written in the drift-diffusion approximation, transport equations for the

excited neutral species describe diffusion. The geometry considered is that of the so-

called cathode boundary layer discharge device, which was used in the vast majority

of the experiments [7, 46—54, 107, 108] and comprises a flat cathode and a perforated

anode, separated by a dielectric, with the radius of the opening in the anode equal to

the radius of the discharge cavity in the dielectric; e.g., Figure 1 of [54]. It is assumed

that the charged and excited particles coming from the plasma are absorbed, and

subsequently neutralized and deexcited, respectively, at the surfaces of the electrodes

and the dielectric.

The above-described detailed model is computationally costly and therefore not

suitable for serial 3D simulations, required for the purposes of this work. It was shown

previously experimentally [49] and computationally [101] that self-organized patterns

in the cathode boundary layer discharge and a discharge with parallel-plane electrode

configuration are qualitatively similar. An account of detailed chemical kinetics does

not produce a qualitative effect as well [57]. Therefore, most of simulations reported

below have been performed by means of a more basic model, which relies on a simple

chemical kinetic scheme and assumes a parallel-plane electrode configuration. (We

note right now that the results obtained in the framework of the basic and detailed

models are qualitatively similar, in agreement with the above.) The basic model takes

into account only one ion species (molecular ions), the only ionization channel (direct

ionization from the ground state by electron impact) with a rapid conversion of the

produced atomic ions into molecular ions, and employs the local-field approximation

(i.e., the electron kinetic and transport coeffi cients are treated as known functions

of the local reduced electric field). The discharge vessel is assumed to be a cylinder

with the end faces being the electrodes and the lateral surface being insulating. The

neutralization of the ions and the electrons at the dielectric is neglected, so particles

coming from the plasma are reflected back. Note that the effect of the neutralization

has been well understood by now (e.g., [101] and references therein); as far as 3D spots

are concerned, it results in the migration of spots away from the wall in the direction

to the center of the cathode [57]. With this in mind, the assumption of negligible

neutralization is suffi cient for most purposes of this work, while making computations
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less costly and easier to analyze.

Identifying the relevant bifurcations

Results of simulations reported in this section have been obtained by means of the basic

model for the following conditions: a discharge in xenon under the pressure of 30Torr,

the electron temperature Te = 1 eV, the heavy-particle temperature Th = 300K, the

interelectrode gap and discharge radius both of 0.5mm, and the secondary electron

emission coeffi cient γ = 0.03.

In order to show the place of the bifurcations being investigated (those correspond-

ing to the second, third, and fifth transitions in Table 4.1) in the general pattern of

self-organization in dc glow microdischarges, we will briefly introduce the latter, re-

ferring to [63] for details. In the framework of the basic model, the problem admits

a 1D solution describing a mode in which all the variables depend only on the axial

variable. This mode exists at all values of the discharge current and may be termed

the fundamental mode. There are also multidimensional modes which bifurcate from,

and rejoin, the fundamental mode; the so-called second-generation modes. Figure 4.2

depicts the current-voltage characteristics (CVC) of the fundamental mode and the

first five second-generation modes. 〈j〉 in this figure is the average current density
evaluated over a cross section of the discharge vessel (which is proportional to the

discharge current). The schematics illustrate distributions of current density on the

cathode surface associated with each mode. ai and bi designate bifurcation points

where second-generation modes branch off from and rejoin the fundamental mode.

The modes are ordered by decreasing separation of the bifurcation points: the mode

designated a1b1 and is the one with the bifurcation points positioned further apart, the

mode a2b2 is the one with the second largest separation between bifurcation points,

and so on.

The modes a1b1 and a3b3 have been computed previously ([42] and [56], respec-

tively) and are included in Figure 4.2 for the sake of completeness; we only note that

a1b1 is 3D with the azimuthal period of 2π while a3b3 is 2D with one branch associated

with a spot at the center of the cathode and the other branch with a ring spot at the

periphery of the cathode. The other modes, a2b2, a4b4, and a5b5, are 3D with periods

π, 2π/3, and π/2, respectively. The evolution with discharge current of the cathodic

spot patterns associated with these modes is shown in Figure 4.3. Let us consider first

the evolution of the patterns associated with the mode a2b2; Figure 4.2(a). The state

151.05V is positioned in the vicinity of the bifurcation point a2 and the spot pattern

comprises two very diffuse cold spots at the periphery of the cathode. Further away

from a2, the cold spots expand and at state 151.79V start merging. This corresponds
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Figure 4.2: CVCs. Solid: the 1D (fundamental) mode. Dashed-dotted: 2D mode
a3b3. Other lines: different 3D modes. Circles: bifurcation points. Top: General
view. Bottom: Details near the point of minimum of the CVC of the 1D mode.
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to the retrograde section of the CVC a2b2 seen in Figure 4.2(b) in a narrow current

range around 280Am−2. As current is further reduced towards b2, the two cold spots

expand further and the resulting pattern comprises two well-pronounced hot spots at

the periphery; state 160.4V. Note that this pattern is similar to those observed in the

experiment; cf. [48, Fig. 5]. Finally, the state 173.93V is positioned in the vicinity of

the bifurcation point b2 and the hot spots are very diffuse.

The patterns associated with the mode a4b4 are shown in Figure 4.3(b). The

state 151.01V is positioned in the vicinity of the bifurcation point a4 and the pattern

comprises three very diffuse cold spots at the periphery. Further away from a4, the

spots become better pronounced and a cold spot appears at the center; states 151.15V

and 151.53V. Note that similar patterns with three hot spots have been observed in

the experiment, cf. [48, Fig. 5] and [54, Fig. 2]. As current is further reduced towards

b4, the cold spot at the center is gradually transformed into a hot spot. The hot spots

become well pronounced and a pattern comprising three (hot) spots at the periphery

and a central spot is formed; state 151.74V. (It is this pattern which is shown in the

schematic in Figure 4.1) Note that patterns with three spots at the periphery and a

spot at the center similar to that of the state 151.74V have also been observed in

the experiment, cf. [52, Fig. 4]. Note also that the transition between patterns with

well-defined cold and hot spots is not accompanied by retrograde behavior, in contrast

with the case of the mode a2b2. The state 172.48V is positioned in the vicinity of the

bifurcation point b4 and the hot spots are very diffuse.

The evolution of patterns associated with the mode a5b5 shown in Figure 4.3(c)

follows the same trend as the mode a4b4. Note that patterns with four spots at the

periphery have also been observed in the experiment, cf. [48, Fig. 2], [54, Fig. 2].

A convenient graphical representation, or bifurcation diagram, of the modes a4b4
and a5b5 is given in Figure 4.4 with the use of the coordinates (〈j〉 , jc), where jc
is the current density at the center of the cathode. This representation allows a

quick identification of the state where the switching between patterns comprising cold

and hot spots at the center happens: it is the point in Figure 4.4 where the line

representing the mode in question intersects the straight line representing the 1D mode.

For currents higher than the one corresponding to the switching, the current density at

the center is lower than that corresponding to the 1D mode and the pattern comprises

a cold spot at the center; jc > 〈j〉 for lower currents and the pattern comprises a hot
spot at the center.

Breaking of axial symmetry occurring at the state a5 (Figures. 4.2 and 4.4) cor-

responds to the second transition in Table 4.1. In order to identify bifurcations cor-

responding to the third and fifth transitions, one needs to consider third-generation

modes, i.e., 3D modes that branch off from and rejoin second-generation modes.
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Figure 4.3: Evolution of distributions of current on the surface of the cathode associ-
ated with different modes. a): mode a2b2. b): a4b4. c): a5b5.

Three third-generation modes bifurcating from the mode a3b3, designated a3,1b3,1,

a3,2b3,2, and a3,3b3,3, are shown in Figure 4.5. They branch off from and rejoin that

branch of the mode a3b3 which is associated with a ring spot at the periphery; the

bifurcations are breaking of axial symmetry. The modes a3,1b3,1, a3,2b3,2, and a3,3b3,3
have the periods of 2π/3, 2π/5, and π/3, respectively, and are associated with spot

patterns comprising three spots at the periphery of the cathode, five spots, and six

spots, respectively. Since none of the patterns shown in Figure 4.5 comprise a spot

at the center, the coordinates (〈j〉 , jc) would be inconvenient and the coordinates
(〈j〉 , je) are used, where je is the current density at a fixed point on the periphery of
the cathode which coincides with the center of one of the spots.

The evolution of the spot patterns associated with the mode a3,2b3,2 is shown in

Figure 4.6. At state 151.82V, which is positioned near the bifurcation point a3,2, the

ring spot is slightly non-uniform in the azimuthal direction. Further away from a3,2,

the non-uniformity evolves into well-pronounced spots (states 151.81V and 151.84V).

The spots become smaller as the current is further reduced (state 152.26V). As the

bifurcation point b3,2 is approached, the spots expand once again (state 167.94V). In

the close vicinity of b3,2 (state 170.70V) a ring spot with a weak non-uniformity in

the azimuthal direction is seen. Note that patterns similar to those shown in Figure

4.6 have been observed in the experiment [54, Fig. 5 ].

The behavior of the modes a3,1b3,1 and a3,3b3,3 follows the same trend as the behav-
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Figure 4.4: Bifurcation diagram. Solid: the 1D (fundamental) mode. Dashed, dotted:
3D second generation modes a4b4 and a5b5. Circles: bifurcation points.
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Figure 4.5: Bifurcation diagram. Solid: the 1D (fundamental) mode. Dashed: 2D
mode a3b3. Other lines: 3D modes. Circles: bifurcation points.
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Figure 4.6: Evolution of distribution of current on the surface of the cathode associated
with the mode a3,2b3,2.
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Figure 4.7: Bifurcation diagram. Solid: the 1D (fundamental) mode. Dashed: 3D
second-generation mode a10b10. Dotted: 3D third-generation mode a10,1b10,1. Circles:
bifurcation points.

ior of the mode a3,2b3,2. The patterns are similar to experimentally observed patterns

comprising three and six spots inside the cathode; cf. [48, Figs. 2 and 5] and [54, Fig.

2]. Note, however, that the pattern with three spots associated with the mode a3,1b3,1
is similar to the pattern with three spots appearing in some states belonging to a4b4
(states 151.15V and 151.53V in Figure 4.3(b)) and it is diffi cult to know which one of

these two modes was observed in the experiments [48, 54]. A similar comment applies

to the mode a3,3b3,3.

Breaking of axial symmetry occurring at the states a3,2 and b3,2 in Figure 4.5

corresponds to the third transition in Table 4.1. The bifurcation corresponding to

the fifth transition is period doubling occurring at the state a10,1 in Figure 4.7. Here

a10b10 is a second-generation mode with the period of π/3 and a10,1b10,1 is a third-
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generation mode with the period of 2π/3. The period doubling at a10,1 occurs as

follows: every second spot gradually moves from the periphery towards the center of

the cathode; eventually a central spot is formed. (Note that the image illustrating the

mode a10,1b10,1 in Figure 4.7 corresponds to the situation where the central spot has

already been formed.) This is similar to how the similar bifurcation occurs in helium

[57, Fig. 9] and krypton [53, Fig. 2] except that in krypton the central spot is already

present at the bifurcation point a10,1.

4.4.4 Comparing the modelling and the experiment

As discussed in the preceding section, the bifurcation corresponding to the second

transition in Table 4.1 is breaking of axial symmetry occurring at the state a5 (Figure

4.2 and 4.4), where a mode with a ring-like arrangement of four spots (mode a5b5)

branches off from the (fundamental) mode with an axially symmetric spot occupying

the whole cathode surface except for the periphery (the abnormal discharge). The bi-

furcation corresponding to the third transition is breaking of axial symmetry occurring

at the states a3,2 and b3,2 (Figure 4.5), where a mode with a ring-like arrangement of

five spots (mode a3,2b3,2) branches off from the axially symmetric mode with a ring

spot (a3b3). The bifurcation corresponding to the fifth transition is period doubling

occurring at the state a10,1 (Figure 4.7), where the mode a10,1b10,1, which is associated

with three spots at the periphery and three spots closer to the center and has the

period of 2π/3, branches off from the mode a10b10, which is associated with a ring-like

arrangement of 6 identical spots at the periphery and has the period of π/3.

The computed patterns in the vicinity of the bifurcation points are compared with

the patterns observed in the experiments in Figure 4.8. The experimental images

shown in Figure 4.8(a) and 4.8(b) have been taken from Figure 2 and 5, respectively,

of [54]. Those shown in Figure 4.8(c) have been kindly provided by W. Zhu and P.

Niraula [109]; we note for completeness that the geometry in this experiment was the

same as in [54], the Xe pressure was 100 torr, and the current and voltage were nearly

the same for both frames: 0.155mA and 278V.

The first one of the computed images shown in Figure 4.8(a) represents the bifur-

cation point a5. The other images correspond to states belonging to the mode a5b5
in the vicinity of a5. The last one of the computed images shown in Figure 4.8(b)

represents the bifurcation point a3,2, the other images correspond to states belonging

to the mode a3,2b3,2 in the vicinity of a3,2. The first one of the computed images shown

in Figure 4.8(c) represents the bifurcation point a10,1, the other images correspond to

states belonging to the mode a10,1b10,1 in the vicinity of a10,1.

It is seen from Figure 4.8 that the computed patterns in the vicinity of the bifurca-
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a)

b)

c)

Figure 4.8: Experimentally observed (top) and computed transitions (bottom) between
different modes in xenon. a) Top: second row of table. Bottom: current density around
bifurcation point a5 of figure 4.2. b) Top: third row of table. Bottom: current density
around bifurcation point a3,2 or figure 4.5. c) Top: row five of table. Bottom: current
density around bifurcation point a10,1.



4. Bifurcations in the theory of current transfer to cathodes of DC
discharges and observations of transitions between different modes 57

tion points closely resemble the patterns observed in the experiments. This supports

the hypothesis that the transitions between patterns of different symmetries observed

in the experiment and listed in the second, third, and fifth lines of Table 4.1 are

quasi-stationary and occur through pitchfork bifurcations.

The transition between the abnormal discharge and a mode with four spots, shown

in Figure 4.8(a), resembles the well-known transition between the abnormal and normal

glow discharges, the difference being that there are four spots in the 3D mode and not

just one as in the normal discharge. A question arises as to what is the reason of this

difference and why just four spots are formed and not two or three. This question is

related to a more general question as to why patterns with multiple spots have been

observed in glow microdischarges but not in regular-scale glows and is of significant

interest.

It is seen from Figure 4.2 that the mode with four spots at the periphery branches

off from the abnormal discharge, at the state a5, through a supercritical bifurcation,

while the modes with one, two, and three spots branch off, at the states a1, a2, and a4,

through subcritical bifurcations. (Note that this is a typical situation: low- and high-

order second-generation modes tend to branch off through, respectively, subcritical

and supercritical bifurcations [63, Fig. 3].) As discussed in Sec. 4.2, a usual necessary

condition for a quasi-stationary transition between two steady-state modes connected

by a pitchfork bifurcation is that the bifurcation be supercritical. Therefore, it may

seem that the modelling results shown in Figure 4.2 explain why the abnormal dis-

charge in the experiment with microdischarges goes into the mode with four (rather

than one, two, or three) spots, as seen in Figure 4.8(a). On the other hand, the ex-

perimental CVC of this transition [54, Fig. 3a] apparently represents a diagram of a

subcritical bifurcation, and so does also the CVC shown in [48, Fig. 3a]. Thus, there

is a discrepancy between the measurements, on one hand, and numerical modelling

and the usual trend of the bifurcation theory, on the other. The other discrepancy

between the measured and computed CVCs is that the discharge voltage in the 3D

mode is lower than that in the (axially symmetric) abnormal mode in the experiment

but slightly higher in the modelling.

In order to try to resolve the discrepancies, the bifurcations occurring at the states

a4 and a5 have been recomputed by means of the detailed model, described in Sec.

4.4.3 and the Appendix; Figure 4.9. Since the geometry of the discharge vessel and

the boundary conditions describing absorption of the charged particles at the wall

invalidate the 1D solution, the role of the fundamental mode (abnormal discharge)

is played by the first 2D mode [63]. All second-generation solutions are 3D, and the

first four modes, which have the periods of 2π, π, 2π/3, and π/2, respectively, are

designated a1b1, a2b2, a4b4, and a5b5 (i.e., the designation a3b3 is skipped in order to
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maintain consistency with the designations of the second-generation modes computed

in the framework of the basic model).

It is seen from the schematics in Figure 4.9 that the account of neutralization of

the charged particles at the wall of the vessel causes the spots to migrate from the

edge to the inside of the cathode. The discharge voltage computed in the framework

of the detailed model is significantly higher than the voltage in the basic model. On

the other hand, the patterns of the CVCs are similar, in agreement with what was said

in Sec. 4.4.3. In particular, the bifurcation occurring at a5 is supercritical while the

one at a4 is subcritical (as well as those at a1 and a2, which are not shown in Figure

4.9) and the discharge voltage in the 3D modes in both models is slightly higher than

that in the fundamental mode. Thus, the above-described discrepancies have not been

resolved and further computational and experimental work is needed.

4.5 Summary and the work ahead

The existence, or not, of bifurcations of steady-state solutions describing different

modes of current transfer to electrodes of dc discharges is related to the underlying

physics and is therefore of significant interest. Bifurcations manifest themselves in the

experiment as transitions between modes with different spot patterns, which occur as

the discharge current I is varied. Two scenarios of such transitions are possible: (1)

quasi-stationary (continuous) and, consequently, reversible transitions between states

where distributions of luminosity over the electrode surface possess different sym-

metries and (2) transitions that occur abruptly even for very small variations of I.

Quasi-stationary transitions are related to a symmetry-breaking (pitchfork) bifurca-

tion. If the discharge vessel is axially symmetric, pitchfork bifurcations of only two

types may occur: breaking of axial symmetry and doubling of period with respect to

the azimuthal angle. Abrupt transitions that occur in a monotonic way, i.e., without

temporal oscillations, are related to pitchfork or fold bifurcations. Finally, abrupt

transitions accompanied by temporal oscillations are unrelated to a bifurcation of

steady-state solutions.

The above general reasoning is valid for mode changes on electrodes of any dc

discharges. In the case of (refractory) cathodes of high-pressure arc discharges, the

eigenvalue problem governing stability of steady-state solutions against small pertur-

bations is self-adjoint and its spectrum is real. Therefore, all abrupt transitions are

monotonic in time, in agreement with what is known from the experiment. It fol-

lows that any transition between different modes, be it quasi-stationary or abrupt, is

related to a bifurcation of steady-state solutions in the case of arc cathodes. Thus,

transitions between diffuse and spot modes of current transfer, frequently observed in
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Figure 4.9: CVCs. Detailed model. Solid: the first 2D (the fundamental) mode.
Other lines: 3D modes a4b4 and a5b5. Circles: bifurcation points.
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the experiment, represent an indication of the presence of pitchfork or fold bifurcations

of steady-state solutions, as predicted by the theory.

A wealth of spot patterns and transitions between different patterns have been

observed on cathodes of dc glow microdischarges [7, 46—54, 107, 108]. In particular,

transitions between states of different symmetries that seem to be continuous (i.e.,

quasi-stationary) have been observed in [54]. It is legitimate to hypothesize that such

transitions occur through pitchfork bifurcations (breaking of axial symmetry or period

doubling) of steady-state solutions according to the first above-mentioned scenario.

This hypothesis has been confirmed by numerical modelling: the relevant bifurcations

have been found and the computed patterns in the vicinity of the bifurcation points are

found to closely resemble the patterns observed in the course of the transitions in the

experiment. Note that new 3D modes of current transfer were computed in the course

of finding the bifurcations and these new modes are associated with experimental spot

patterns reported in the literature.

Thus, available experimental data on multiple modes of current transfer to cathodes

of dc glow and arc discharges provide clear indications of the presence of pitchfork

or fold bifurcations of steady-state solutions, as predicted by the theory. While the

comparison between the theory and the experiment still remains qualitative in the

case of dc glow cathodes, the agreement is convincing and lends further support to the

theory.

A detailed experimental investigation of transitions between different spot patterns

on cathodes of glow microdischarges, performed with suffi ciently small steps in I and a

suffi ciently high temporal resolution and accompanied by numerical modelling, would

allow verification of the above scenarios. For example, it would be very interesting to

verify the theoretical prediction that successive transitions between ring arrangements

of 4, 5, 6, 5, 4, and 3 spots shown in, e.g., [54, Fig. 2] and [48, Fig. 2] cannot be realized

in a quasi-stationary way, in contrast to the second, third, and fifth transitions in Table

4.1. It should be stressed that this prediction is consistent with the experimental

observation that the transition between the ring arrangements of 6, 5, and 4 spots was

irreversible [48]. Note also that the theory predicts that any transition, except those

between an axially symmetric mode and a 3D mode and those between 3D modes with

doubling of azimuthal period, will be abrupt even for very small variations of discharge

current and/or voltage.

Another interesting question to be addressed is the one discussed in the end of Sec.

4.4.4 and concerns the discrepancy between the measured CVC of the transition from

the abnormal discharge and the mode with four spots, on the one hand, and numerical

modelling as well as the usual trend of the bifurcation theory, on the other.
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Appendix: Equations and boundary used in chapter 4
The system of differential equations describing the detailed model reads

∇ · Je = Se, Je = −De∇ne + ne µe∇ϕ;

∇ · Jε = eJe · ∇ϕ− Sε, Jε = −Dε∇nε + nε µε∇ϕ;

∇ · Jiβ = Siβ, Jiβ = −Diβ∇niβ − niβ µiβ∇ϕ;

∇ · Jexβ = Sexβ, Jexβ = −Dexβ∇nexβ;

ε0∇2ϕ = −e (ni1 + ni2 − ne). (4.1)

Here β = 1, 2; the indexes e, ε, i1, i2, ex1, ex2 refer to electrons, electron energy density,

atomic ions, molecular ions, atoms in excited states, and excimers, respectively; nα, Jα,

Dα, µα, Sα are the number density, density of the transport flux, diffusion coeffi cient,

mobility, and rate of production of particles per unit time and unit volume of species

α (α = e, i1, i2, ex1, ex2); the electron energy density is defined as nε = neε, where ε is

the average electron energy, and coincides with 3/2 of the electron pressure; Jε is the

density of electron energy flux; Dε and µε are the so-called electron energy diffusion

coeffi cient and mobility; Sε is the rate of loss of electron energy per unit time and

unit volume due to collisions; ϕ is electric potential; ε0 is permittivity of free space,

and e is the elementary charge. The transport coeffi cients used are the same as in

[57]. The set of reactions comprises electron impact ionization from the ground state,

an effective excited atomic state, and the metastable molecular state; excitation of

atoms by electron impact; atomic ion conversion to molecular ions with neutral atoms

playing the role of the third body; metastable pooling; dissociative recombination;

photon emission from the atomic and molecular excited states; conversion of excited

atoms to excimers with neutral atoms playing the role of the third body. The kinetic

coeffi cients are the same as in [57].

The computation domain corresponds to the cathode boundary layer discharge

device (e.g., Figure 1 of [54]). Let us introduce cylindrical coordinates (r, φ, z) with the

origin at the center of the cathode and the z-axis coinciding with the axis of the vessel.

Then the computation domain is a union of the cylinder {r < R, 0 < z < hd + ha} and
the half-space {z > hd + ha}, where hd and ha are thicknesses of the dielectric and the
anode and R is the radius of the opening in the anode and of the cavity in the dielectric.

The circle {r < R, z = 0} is the surface of the cathode, {r = R, hd < z < hd + ha} ∪
{r > R, z = hd + ha} is the surface of the anode, and the surface {r = R, 0 < z < hd}
is dielectric.

The boundary conditions for Eqs. (4.1) are written in the conventional form (e.g.,
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[110, 111]):

Jαz =
1

4

√
8kBTα
πmα

nα, Jez=− γJiz − γJi2z, Jεz= (EI − 2W )Jez, ϕ = 0 ;

Jαn =
1

4

√
8kBTα
πmα

nα, Jen =
1

2

√
8keTe
πme

ne, Jεn =
1

2

√
8kBTe
πme

nε, ϕ = U ;

Jαr =
1

4

√
8kBTα
πmα

nα, Jer =
1

2

√
8keTe
πme

ne, Jεr =
1

2

√
8kBTe
πme

nε, Ji1r + Ji2r − Jer = 0,

at the surface of the cathode, anode, and dielectric, respectively. Here γ is the effective

secondary emission coeffi cient, which is assumed to characterize all mechanisms of

electron emission (due to ion, photon, and excited species bombardment) [2]; EI is

the ionization energy of the incident ions; W is the work function of the cathode

surface; U is the discharge voltage; the subscripts r, z, and n denote radial, axial,

and normal projections of corresponding vectors (the normal n points outwards from

the computation domain); α = i1, i2, ex1, ex2; kB is Boltzmann’s constant; Tα = Th,

where Th is the heavy-particle temperature (a given parameter); Te = 2ε/3kB is the

electron temperature; and mα are the particle masses.

Results of simulations performed by means of this model, reported in this work,

refer to the following conditions: discharge in xenon under the pressure of 75Torr,

Th = 300K, hd = 0.25mm, ha = 0.25mm, R = 0.375mm, and γ = 0.075.

The system of differential equations describing the basic model comprises the first

and last equations in Eq. (4.1) and the third equation written for only one ion species.

Boundary conditions at the cathode, anode, and dielectric are written as, respectively,

z = 0 :
∂ ni
∂ z

= 0, Jez = −γJiz, ϕ = 0 ;

z = h : ni = 0,
∂ ne
∂ z

= 0 , ϕ = U ;

r = R :
∂ ni
∂r

=
∂ ne
∂r

= 0 , Jir − Jer = 0, (4.2)

where ni and Ji are the number density and transport flux density of the ions. The first

boundary condition in the first line and the second boundary condition in the second

line imply that diffusion fluxes of the attracted particles at the electrode surfaces are

neglected compared to drift. The first and second boundary conditions in the third

line imply that the neutralization of the ions and the electrons at the dielectric is

neglected. The transport and kinetic coeffi cients used in the basic model for xenon

are taken from [56].

Numerical results reported in this work have been computed using the commercial

finite element software COMSOL Multiphysics. The detailed model was implemented

using the Plasma module of COMSOL, which was adapted so that it could be used
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in combination with a stationary solver and supplemented with a mesh element size

based stabilization method to reduce the Péclet number. The basic model was im-

plemented using the Transport of Diluted Species module, and also solved using a

stationary solver.



Chapter 5

Conclusions of the thesis

In this work self-organized patterns of current density on electrodes of dc glow dis-

charges were modelled. The modelling was performed in the framework of the fluid

description of plasma.

Patterns of anodic spots were self-consistently computed in the conventional DC

glow discharge model. The solution describing the spots was found in the same range

of current as the spotless solution. The computed anode spots are similar to the spots

on cathodes of arc and DC glow discharge in the following ways. Both are described

by multiple steady state solutions and reveal azimuthal periodicity. The anoidc spots

are different to the spots on cathodes of arc and DC glow discharge in the following

ways. The solution describing the spotless mode for the anodes does not contain a

pronounced N-shaped current-voltage characteristic; no bifurcations were found in a

wide range of currents on the spotless mode, i.e., the anode spots were found to exist

isolated from the 2D spotless mode. The anode spots are apparently related to the

change in the sign of the near anode voltage. The electrode adjacent to the anodic

spots behaves like a mini-cathode, in that the sign of the current density and electric

field is reversed: the anode spots operate as a unipolar glow discharge.

In terms of cathodic spots, self-organized spots were computed in the cathode

boundary layer discharge configuration. The form of the computed patterns is similar

to those computed in the parallel-plane configuration and to those observed in the

experiments in the sense that all of the spots comprise axially symmetric ring spots

or circular arrangements of 3D spots. Activating a fully absorbing dielectric surface

revealed spots not centered at the periphery of the cathode, but rather located inside

the cathode, as they are in the experiment. A palindromic series of the number of

spots with discharge current was found, which what is observed during the switching

between modes with different patterns in the experiment [54].

In terms of current transfer to electrodes of DC discharges, a strong case was built

64
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for the affi rmative to the question of whether bifurcations of steady-state solutions

exist or not on modes of current transfer to cathodes. For current transfer to cathodes

of dc glow microdischarges, a wealth of spot patterns and transitions between different

patterns have been observed in the experiments [7, 46—54, 107, 108], transitions were

found that are candidates for being manifestations of bifurcations. Numerical mod-

elling was done to further evidence the candidates’cases of being bifurcations: relevant

bifurcations were found and the computed patterns were found to closely resemble the

patterns observed in the course of the transitions in the experiment. An analysis was

made of transitions between different modes of current transfer to cathodes of arc

discharges. Transitions between diffuse and spot modes of current transfer, frequently

observed in the experiment, was found to represent an indication of the presence of

pitchfork or fold bifurcations of steady-state solutions.

New 3D modes of current transfer to cathodes of glow discharges were computed,

in framework of a basic model, in the course of finding the bifurcations, these new

modes are associated with the experimental spot patterns reported in the literature.

Modelling was performed in the experimental conditions, with a more detailed model

that took into account multiple plasma and gas species, their chemistry, and using the

local mean energy approximation. A discrepancy was found between the measured

CVC of the transition from the abnormal discharge and the mode with four spots in

the experiment on the one hand [54], and the detailed numerical modelling as well as

the usual trends of the bifurcation theory on the other.

In future work, one may make a detailed experimental investigation of transitions

between different spot patterns on cathodes of glow microdischarges, performed with

suffi ciently small steps in current and a suffi ciently high temporal resolution, that

would allow, for example, the verification of the prediction that successive transitions

between ring arrangements of 4, 5, 6, 5, 4, and 3 spots shown in, e.g., [54, Fig. 2] and

[48, Fig. 2] cannot be realized in a quasi-stationary way.

It would be of theoretical interest to investigate what effect the electric field depen-

dence on secondary emission, e.g. as in [112], has on patterns of glow discharge spots.

Also of theoretical interest is the question of why patterns with multiple spots have

been observed on cathodes of glow microdischarges, but not in regular-scale glows.

The question of what the effect is on spots of liquid electrodes, as opposed to

metallic ones, is of significant interest as it is spots on liquid anodes that are linked to

a cancer inhibiting capacity [6].
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