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Resumo

Este trabalho propõe um método para avaliar tensões de disrupção de descargas de
baixa corrente e alta pressão em configurações com fraca não-uniformidade do campo.

Todas as configurações estudadas, compostas por dois elétrodos separados por um
espaçamento, foram construídas utilizando um pacote de software baseado no método
numérico de elementos finitos. As equações do modelo de fluido foram configuradas
para modelizar ar a 1 atm presente no espaçamento, com um esquema simplificado de
processos químicos de plasma envolvendo eletrões, um ião positivo e três iões negativos.

O critério de Townsend para a determinação da tensão de auto-sustentação é
matematicamente alargado a descargas multidimensionais. O critério alargado, baseia-
se na análise da descarga ao longo das linhas de campo elétrico. No entanto, o novo
critério continua a ser válido apenas para configurações com gases eletronegativos
dominados pela deriva.

Este trabalho propõe uma abordagem mais geral para a obtenção da descarga
autónoma, válida também para gases eletropositivos e/ou onde a difusão pode ser
significativa. Esta abordagem foi designada de ‘método de ressonância’ e pode ser
aplicada a descargas quase-estacionárias de baixa corrente em gases a pressão elevada.
O método baseia-se no reconhecimento de que o sistema de equações de fluidos é
linear na ignição da descarga e que a sua solução constitui um problema de valores
próprios sendo a tensão aplicada o valor próprio. É estabelecido um procedimento
sistemático para a obtenção da descarga autónoma. Cada passo baseia-se em cálculos
estacionários. O método proposto permitiu investigar a relação entre as tensões de
auto-sustentação e de disrupção.

É dada especial atenção a uma configuração simples que modeliza um interruptor.
Para esta configuração axissimétrica, o método de ressonância calculou duas tensões de
auto-sustentação utilizando duas condições fronteira sobre o dielétrico. A modelização
não-estacionária calculou duas tensões de disrupção; a tensão de primeira-disrupção
e a de disrupção-repetitiva, resultantes de duas condições iniciais. Os cálculos não-
estacionários basearam-se na utilização da tensão de auto-sustentação, previamente
calculada pelo método de ressonância. Os resultados mostram que, com condições
de fronteira adequadas, as tensões de auto-sustentação concordam com as tensões de
disrupção calculadas. Este acordo traduz-se numa redução significativa do tempo
computacional necessário para estimar a tensão de disrupção de uma configuração.

Palavras chave: Descargas de baixa corrente quasi-estacionárias. Ignição de
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descarga autónoma. Método de ressonância. Solvers estacionários. Primeira-disrupção.
Disrupção-repetitiva.



Abstract

This work proposes a method for evaluating breakdown voltages of low-current, high-
pressure discharges in setups with weak field non-uniformity.

All studied setups, composed of two electrodes separated by a gap, were constructed
using a numerical finite element method software package. Fluid model equations were
coded to model air at 1 atm filling the gap, with a simplified scheme of plasmachemical
processes involving electrons, a positive ion and three negative ions.

The Townsend criterion for determining the self-sustainment voltage, is mathe-
matically extended to multidimensional discharges. The extended criterion is based
on analyzing the discharge along electric field lines. The new criterion is still, however,
only valid for setups with drift dominated electronegative gases.

This work proposes a more general approach for obtaining the self-sustaining dis-
charge, valid also for electropositive gases and/or where diffusion may be significant.
This approach is called the ‘resonance method’and is applicable to low-current quasi-
stationary discharges in high-pressure gases. The method is based on recognizing that
the system of fluid equations is linear at discharge ignition, and that its solution con-
stitutes an eigenvalue problem with the applied voltage being the eigenparameter. A
systematic procedure is laid out to obtain the self-sustaining discharge. Each step of
the procedure is based on stationary calculations. The proposed method allowed to
research the relation between self-sustainment and breakdown voltages.

Special attention is given to a simple setup modeling a circuit-breaker. For this
axi-symmetric setup, the resonance method, using two boundary conditions over the
dielectric, calculated two self-sustainment voltages. Non-stationary modeling, using
two initial conditions, calculated two breakdown voltages; the first-breakdown and
repetitive-breakdown voltages. The non-stationary calculations relied on using the
self-sustainment voltages as calculated by the resonance method. Results show that,
with the proper boundary conditions, the self-sustaining voltages agree well with the
obtained breakdown voltages. This agreement translates into a significant reduction
of the computational time needed to estimate the breakdown voltage of a setup.

Keywords: Low-current quasi-stationary discharge. Ignition of self-sustaining
discharge. Resonance method. Stationary solvers. First-breakdown. Repetitive-
breakdown.
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Chapter 1

Introduction

1.1 Gas discharges

In the late nineteenth century, the simple setting of a sealed glass tube with two elec-

trodes and filled with a gas allowed researchers to undertake a systematic experimental

study of the behavior of electrical discharges in gases. Johann Wilhelm Hittorf, a Ger-

man physicist, observed that when a high voltage was applied to a gas-filled tube, an

electrical discharge would occur across the electrodes, associated with the ionization of

the gas and emission of light. He also observed that the characteristics of the discharge,

such as its color and shape, could be influenced by the type of gas and the pressure

inside the tube. Building on Hittorf’s work, other researchers began to explore the

relation between the voltage applied to a gas-filled tube and the characteristics of the

resulting discharge. In 1889 Friedrich Pashen found that there was a critical voltage at

which the discharge would become self-sustaining. He observed the non-monotonic de-

pendence of this ignition-voltage in parallel-plate gaps with varying gap and pressure.

J.J. Thomson identified the observed cathode rays that would make the glass behind

the anode glow, as being made up of a new particle, the electron(1897). This was

also the time when Thomas Edison perfected a carbon filament between electrodes

creating the first durable and economic light bulb (1880). It was a time of prolific

experimental developments made by many scientists, the time when electricity started

its ever ascending importance, driving society into our electrified modernity.

Coincidence or not, the late nineteenth century also saw the development of pow-

erful theoretical tools for the field of gas discharges. In 1872 Boltzmann derived a

nonlinear integro-differential equation capable of describing a weakly ionized gas at

the microscopic level. Not long after, in 1903, another set of equations was being used,

e.g. [1], to describe the flux of charged particles as composed of a drift term due to

an electric field, and a diffusion term due to concentration gradients. These latter

1



1. Introduction 2

equations were shown by Chapman and Enskog, in 1916-1917, to be derivable from

the Boltzmann equation under certain conditions known as the drift-diffusion approx-

imation. The equations of continuity together with the drift-diffusion approximation

for the particle flux, still form one of the main resources for studying the transport of

charged particles in gases.

The ever increasing demand for electrical power has carried since its inception a

challenge: how to prevent breakdown, i.e. prevent a large quantity of charge from

abruptly flowing out of a conductor, through an insulator, to a position of lower

potential? This challenge is still at the forefront of the technological development.

Energy transmission and distribution across long distances, like from renewable off-

shore wind farms, is done through high voltage direct current (HVDC) cables which

can be buried or run over the seabed. The conductor is held at the center of the coaxial

cable by dielectric spacers in a gas, this setting is called a Gas Insulated Line (GIL)

[2—5]. Another prospective application of HVDC is in More Electrical Aircraft (MEA)

research, that aims to develop solutions for more energy effi cient and environmentally

sustainable commercial flying. In this field, one of the identified enabling technologies

is the development of high breakdown-strength insulation materials [6, 7].

When a section of the energy grid of a city, an airport, a heavy industry, wind tur-

bines, down to an individual household appliance, needs to be shut down for whatever

reason, a circuit breaker is needed. A circuit breaker is an automatically operated elec-

trical switch designed to protect an electrical circuit from damage caused by overload

or short circuit. Its basic function is to detect a fault condition and interrupt current

flow. These switches come in different sizes and shapes depending on their purpose.

For instance the one in Fig. 1.1 is used in rail infrastructure, automotive factories,

stadiums and power generation plants, to mention just a few applications.

Prospects for an ever enhanced performance of these devices require a thorough

understanding of the physics of the breakdown phenomenon. What is the proper defi-

nition of breakdown, where and how does breakdown happen, what type of insulation

breaks down, is it the gas, the dielectric, or both, do the insulator properties vary in

time? What range of applied voltages and temperatures are to be considered? It can

be a formidable task to detail the kinetics of the gas or the bulk and surface properties

of the dielectric and conductor.

1.1.1 Ignition voltage and avalanches

In discharge setups powered by DC voltages that have an electric field that is uniform

(like between parallel-plates), or weakly non-uniform, and where the current is low,

the discharge is called the Townsend, or dark, discharge. In principle, there exists a
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Figure 1.1: Diagram of an industrial low and medium-voltage circuit breaker. Taken
from Siemens AG catalog.

minimum voltage at which the discharge becomes self-sustained. This, however, does

not mean that the considered setup won’t have a stable discharge at lower voltages, it

means that for the lowest possible current, this is the lowest possible voltage. Different

terms are used for this voltage, like ignition, inception or self-sustainment voltage, and

it corresponds to the voltage needed to maintain a steady gain-loss balance of charges.

The physical mechanism in terms of which ignition is explained, is called an

avalanche, see Fig. 1.2. One single electron ejected from the cathode or created in

the volume, for instance by a cosmic ray, accelerates in the electric field to an en-

ergy suffi cient to ionize a neutral atom or molecule and, on collision, creates one more

electron. Both electrons are again accelerated and repeat the process so that after a

distance x there will be exp (αx) electrons, hence the term ‘avalanche’. Here α is the

amount of ionizations per unit length. At the ignition-voltage in a uniform field, if a

seed electron is created and if it manages to gain energy to start an avalanche, then

suffi cient positive ions are created that can drift and strike the cathode to eject sec-

ondary emission electrons, originating the next avalanche in a positive feedback cycle.

As a result of this, suffi cient charge can be created to make the discharge sustainable.

At ignition however space-charge is negligible and the magnitude of the electric field

of the local charges is much lower than the background field due to the electrodes.
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Figure 1.2: Schematic depiction of the avalanche process. ‘-’represent electrons; ‘+’
positive ions; E0 background field due to electrodes; E1 local field due to space-charge.
Here |E1| � |E0|.

In the simplest configuration of parallel-plates with just positive ions and electrons,

neglecting photoionization and diffusion, the following expression for the current can

be obtained

I = I0
exp (αd)

1− γ [exp (αd)− 1]
(1.1)

where I0 is the electron current leaving the cathode, α the number of ionizations per

unit length in the direction of the electric field, γ the effective secondary electron

emission coeffi cient from the cathode, and d the gap distance. The condition for a

self-sustained discharge is obtained equating the denominator of (1.1) to zero. The

resulting criterion is known as the Townsend criterion and can be written as,

αd = ln

(
1 +

1

γ

)
(1.2)

This criterion depends only on global features of the particular discharge, and it is

through the empirical dependence of α on the electric field for the particular gas, that

the ignition-voltage can be calculated. The right hand side (rhs) of (1.2) is dependent

on γ through a logarithm and can be considered a constant for Townsend discharges.

This expression doesn’t take into account negative ions nor detachment reactions. For

ignition αd is typically within the range 8− 10 [8].

Eq. (1.2) cannot be used in cases where the field distribution is not uniform. How-

ever, with a slight modification, it can still be used to estimate the ignition-voltage for

discharges in setups where the electric field non-uniformity is located at the cathode,
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called negative corona discharges. To do this the left hand side (lhs) of Eq. (1.2) has

to be rewritten to account for a non-uniform electric field,

K =

∫
L
αd` (1.3)

where the integration is along the path between the electrodes that maximizes this

integral, called the ionization integral. For discharges in setups where the field non-

uniformity is at the anode, called positive corona discharges, secondary electrons are

mainly created through photoionization in the volume close to the anode tip and

not through secondary electron emission from the cathode. Positive coronas have

filamentary luminous channels propagating till some distance from the anode tip. For

positive coronas the ignition-voltage can be estimated by assigning to K a value in the

range 18−20 [9]. This is an empirical procedure and is therefore subject to significant

error.

Early experimentalists noticed that to get a discharge started in a parallel-plate

setup in parallel with a voltage source and resistor, an initially higher voltage needed

to be applied, 603 V in [10](Chapter XI, sec. 292), which was called the sparking

potential. Once the current started to flow, the voltage needed to keep the discharge

steady, would drop to 350 V. This would be the ignition, or self-sustainment voltage.

The discharge setup is usually in series with a ballast to keep the current low. Charges

produced by residual ionization from the environment or cosmic radiation are energized

in the electric field, initiating a self-sustained discharge. It was also noted that other

sources of ionization like X-Rays, radioactivity, or irradiating the cathode with UV

light, could initiate the discharge [10](Chapter X, sec. 233). The purpose is clear: to

provide an initial aid to get the discharge started.

1.1.2 Breakdown voltage and streamers

If, in a certain DC powered setup with relatively uniform electric field, the voltage is

raised above the ignition-voltage, and if the current is allowed to freely increase, then

there will be breakdown. Breakdown is here understood as a process distinct from

electron avalanches, mainly because experimentally breakdown was seen to happen

much faster than could be accounted for by the avalanche process. Like avalanches, it

is a transient situation, however now the applied voltage leads to a dramatic decrease

of the setup’s resistance, allowing charge to escape the stressed conductor to a lower

potential. The lowest voltage that brings about this transition, is called the breakdown

or hold-offvoltage. The term ‘breakdown’means a transition from low- to high-current

discharge, accompanied by a sharp decrease of the discharge voltage. Experimentally

this transition, which may imply very high final currents, can also be identified by
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a) b)

Figure 1.3: Schematic depiction of two types of streamers. a) Positive streamer b)
Negative streamer. ‘-’ represent electrons; ‘+’positive ions; ‘ ’represent photons;
E0 background field due to electrodes; E1 local field due to streamer head. Here
|E1| & |E0|

high-speed photography as a luminous channel closing the gap and may lead to the

degradation of the setup due to joule heating. The physical phenomenon that causes

the luminous channel and breakdown is called a streamer. In the case of a setup

with a non-uniform field and likewise no restriction on current increase, there may

be so called partial discharges with audible crackling sounds, where a streamer only

partially bridges the gap. There may also be stable corona discharges at voltages above

the ignition-voltage and up to the breakdown voltage. In the field of high-voltage

insulation, breakdown is an unwanted destructive process and much of the ongoing

research is on how to prevent it, or at least how to design setups that better withstand

breakdown. Partial breakdown phenomena or corona discharges, are purposefully

exploited in various other industrial applications, such as high-speed printing devices,

paint sprayers, photocopiers, ozone generators, systems of air and water cleaning,

micromachines and electrostatic microspray, flow control over flight surfaces, in-flight

removal of unwanted electric charges from the surface of aircraft or in handling waste

or water treatment [8, 11—13], to mention just a few.

The breakdown mechanism was put forth by Meek[14], Loeb[15] and Raether[16].

Successive electron avalanche processes described in Sec. 1.1.1, can give rise to a space-

charge buildup with significant distortion of the background electric field in the vicinity

of the avalanche head, see Fig. 1.3. This space-charge locally enhances the electric
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field, which strongly influences ionization by electron impact and photoionization in

front of the avalanche head, that in turn creates more space-charge. This process

constitutes a positive feedback, making, under certain conditions, the avalanche head

propagate in a fairly autonomous way. It is this formation that is called a streamer.

The self-sustained character of a streamer, allows for it to travel into regions where

the background field is small. There are positive streamers that move toward the

cathode and negative streamers that move toward the anode. In experiment, streamer

propagation leaves in its wake a filamentary plasma channel of high conductivity. The

transition from avalanche to streamer occurs when the local field created by the space-

charge in the streamer head is of the same order of magnitude as the background

field. Both positive and negative streamers advance as a result of multiple electron

avalanches in the streamer front, but the exact mechanisms are different. Negative

streamers advance due to a high outward acceleration of electrons in the negatively

charged streamer head, creating numerous electron avalanches directed away from the

negative streamer head [14]. Positive streamers, on the other hand, propagate as a

result of electrons attracted to the positively charged streamer head. These electrons

originate mainly from the region in front of the streamer due to photoionization,

producing multiple avalanches directed towards the positive streamer head. Both

negative and positive streamers are a type of ionization wave, where propagation is

a result of the region in front of the streamer head gradually becoming the region

with highest space-charge. Streamer velocities are therefore not directly connected to

electron drift, but can vary from electron drift velocity to 10% the speed of light. In

air at atmospheric pressure, typical velocities are of the order 0.1−10 mm/ ns but vary

with the electric field [17—19].

It is standard engineering practice, to estimate the breakdown voltage resorting to

the empirical procedure of prescribing to K, in (1.3), a value in the range 18 − 20.

This is the same range as for positive corona ignition, however for streamer breakdown

the electron density should be at least 1018 m−3 [20]. Others have prescribed different

values of K to distinguish Townsend avalanche, Streamer, Corona and Arc breakdown

discharges [9, 21]. It should be noted that in certain conditions the breakdown voltage

coincides with the voltage of ignition of a self-sustaining discharge; e.g., [22].

For air at atmospheric pressure, a typical streamer inception field strength is

26 kV/ cm. Once a streamer is generated, the critical field needed to keep a posi-

tive streamer propagating in air is 4.4 kV/ cm [23], and for a negative streamer the

critical field is 2− 3 times higher [17, 20]. The growth, decay, and stable propagation

of streamers is according to [17] controlled not solely by the external field but also

by the physical dimensions of streamers. In particular, the streamer radius required

for stable propagation is inversely proportional to the external field, with larger and
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Figure 1.4: Schematic depiction of the triple junction (marked in red) between a
dielectric volume, a metal volume, and a gaseous or vacuous volume.

smaller initial radii leading to, respectively, growing and decaying streamers.

1.1.3 Discharges along surfaces, Flashovers

When the setup includes a dielectric along the discharge path between the electrodes,

breakdown is also called surface flashover, indicating that a conduction channel was

created over the dielectric surface accompanied by the emission of a flash of light. The

flashover sequence can generically be subdivided into three stages, an initial stage, a

development stage, and the final discharge stage. In the initial stage, surface flashover

of an insulator is believed to be due to field emission from the cathode. The emitted

amount of electrons increases exponentially in the development stage through ion-

ization, secondary electron emission from the dielectric surface, or other processes.

Eventually, the final discharge stage occurs with a complete breakdown. At every

stage the shape of the electrodes and insulators and insulator material are considered

to be important, in particular for the electric field distribution. There is an overall

consensus on the mechanisms operating in the first stage of surface flashover, namely

field emission from cathode protrusions or the triple junction, which refer to the area

where the insulator, the electrode, and the vacuum or air are in contact, see Fig. 1.4.

The type of breakdown mechanism of the last stage, whether in air or in vacuum, is

still mainly characterized as of the streamer type.

The way in which a dielectric surface affects phenomena in the gas is dictated

by several factors. The normal electric field lines and the normal particle fluxes at

dielectric surfaces are affected by accumulated surface-charge. The geometry of the

dielectric’s surface affects the overall field distribution in the gas. Its material will

polarize in the presence of space-charge, thereby exerting an attractive force on the
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charges. The dielectric surface can capture electrons, but electrons can also be emitted

due to photoemission or ion bombardment. The dielectric will have surface and bulk

conductivities, it may be doped with impurities to create charge traps, the surface

may be finely polished or have a varying grade of roughness or be a profiled surface.

It is therefore clear that the presence of a dielectric surface can significantly affect

the discharge characteristics and is a considerable challenge experimentally to prepare

and test, as well as numerically to model. In the next sections a few experimental and

modelling results are referenced.

Selected experimental and theoretical research

A good review on surface flashover of insulators in vacuum can be found in [24]. For

setups with air filled gaps, among the large number of experimental research, some

noteworthy results are here highlighted. The surface flashover voltage, or breakdown

voltage (BDV) is highest in vacuum, decreases in the pressure range 10−5 atm to

10−3 atm, to increase again with increasing pressure [25, 26], see Fig. 1.5. Focusing

on research done at 1 atm, it was found that the effect of an applied voltage waveform

(DC, AC or pulsed) on the BDV, depends on the non-uniformity of the electric field

and on the pulse rise time [27]. For a disk dielectric tightly stacked between parallel

disk electrodes, Pillai [25] obtained comparable BDVs for AC(peak), DC and the

1.2/50µs pulse(peak) voltage forms. Regarding the type of gas, gases that are more

electronegative, have higher BDVs, since attachment takes away the needed electrons

for the breakdown mechanism [28]. The effect of the dielectric permittivity on the

BDV is weak [25]. In a contribution by Sudarshan [27] effects of surface treatments,

conditioning and geometries are reviewed. More recently, insulators with a profiled

surface, including a shed and knurled surfaces were also seen to be able to increase

the BDV[29—32], a result that was attributed to the larger length a streamer has to

travel to bridge the gap. To try and understand the obtained results, where the BDV

increases (or decreases) in DC conditions, many have resorted to an explanation in

terms of surface-charge effects due to charge accumulation on the dielectric surface.

A dielectric can also have a bulk space-charge density due to temperature [33] or

permittivity gradients, it can trap space-charge close to the surface due to impurities,

decreasing the surface flashover voltage with an increase in temperature [34]. A recent

extended review of the effect of surface-charge can be found in [35].

In an interesting experiment and theoretical treatment, Pai [36] showed that for

breakdown in air at 1 atm between two point electrodes with a dielectric surface par-

allel to the discharge axis but not touching the electrodes, there is a distance of the

dielectric for which the BDV is minimum, i.e., if the dielectric is further from, or closer
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Figure 1.5: Dependence of DC, AC (60 Hz), and impulse flashover voltages on gas
pressure in air. Insulator material Teflon 2 mm long, 7.0 mm diameter. Electrode
material: stainless steel. From [25].

to, the electrodes, the BDV increases. The reason is attributed to the competition be-

tween a volumetric term and an exponential diffusion term in their expression for the

BDV. In [27] Sudarshan identifies the main processes that contribute to the flashover

event. A total of 22 contributing factors are identified related namely to initial elec-

tron production, secondary electron generation processes, charge diffusion, impurity

gas production and electric field modifications. Since then, other contributing factors,

related mainly to properties of the dielectric, were added, like electron traps [37], and

surface and bulk conduction [24, 38, 39].

The most popular theoretical conjectures for breakdown, focus each on one par-

ticular mechanism operating during breakdown. The mechanism has to explain how

the charges, mainly the electrons, are created to initiate the discharge. These conjec-

tures were initially proposed for vacuum, but the processes are present also in com-

pressed gases. Two popular conjectures are: the secondary electron emission avalanche

(SEEA) conjecture where electron emission is due to the impact of electrons or ions

on the dielectric, and another is the electron triggered polarization relaxation (ETPR)

conjecture where electron emission from the dielectric is related to the emission of

trapped electrons from the dielectric. In SEEA some of the electrons emitted from the

triple junction strike the surface of the insulator, producing additional electrons by sec-

ondary emission. Some of these secondary electrons will somewhat further strike the

insulator surface again, producing tertiary electrons. This successive chain of events

results in the development of an SEEA, and culminates in a flashover. In ETPR the

main mechanism for the intermediate phase of surface flashover is the propagation of

electrons in a conduction band of the insulator [24, 37, 38]. The intermediate phase is
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explained as being initiated either by the injection of electrons into the insulator by

tunnelling at the cathode, or by the excitation of electrons at a point on the surface

of the insulator. A significant amount of electrons can be trapped into a 10 − 40µm

surface layer of the dielectric insulator due to the non-uniformity of the material’s

susceptibility. The bounding energy of these ‘polaron-traps’ is expected to be high

enough to allow charge fixing as well as low enough to allow charge migration under

an electrical perturbation. This mechanism is able to explain the long lifetime of neg-

ative or positive surface-charge on the dielectric surface. The injected electrons are

then accelerated by the electric field within the insulator. The electrons gain energy

and begin participating in inelastic collisions, and as soon as their energy exceeds the

band gap of the insulator, they create an electron cascade along the inner dielectric

surface. These electrons induce rapid charge detrapping from localized sites and cor-

responding relaxation of energy of polarization. A fraction of these cascade electrons

will be desorbed from the surface, whereupon the external electric field drives them

towards the anode. One further conclusion from ETPR is that choosing the ‘better’

insulator, with higher permittivity, is not the best option to prevent breakdown in view

of higher permittivity entailing higher susceptibility, and therefore higher density of

trapped charges which can more easily be triggered to participate in breakdown. Re-

views discussing other conjectures and aspects of the surface flashover are mentioned

in [27, 35, 40, 41].

Selected numerical research

In this concise review we focus on modelling of artificial air in a setup containing

a dielectric and subject to DC voltage. Within this still vast category, we look at

simulations of streamers done with the conventional system of hydrodynamic equa-

tions describing low-current discharges, which comprises equations of conservation

and transport of charged particles and the Poisson equation for the electric potential.

In [42] simulations were performed with a dielectric boundary discharge (DBD)

plasma actuator at AC voltage, focusing mainly on the electrohydrodynamic force

generation process. The geometry was a planar dielectric tightly stacked between

an equal sized ground electrode and a planar, but smaller, stressed electrode sunk

flat into the dielectric, i.e., the angular aperture into air at the triple junction was

180o, see Fig. 1.6a. The stressed electrode and dielectric surface were exposed to air

at 1 atm, no photoionization was considered. An initial uniform plasma density of

107 m−3 was used. Surface streamers would originate close to the triple junction of

the stressed electrode and propagate along the dielectric. The effect of the chemical

reaction scheme was researched firstly with a simple model including species; e, N+2 ,
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O+
2 , O−2 , O−. With a more elaborate chemical scheme involving 14 species and 78

reactions they were able to conclude that the cluster ion O+
4 becomes the dominant ion

species influencing the electrohydrodynamic force. In a similar DBD geometry [43], but

having an angular aperture into air at the triple junction of 90o, see Fig. 1.6b, subject to

various Gaussian voltage pulses spanning 15 ns, the effect of residual surface-charges

on surface streamer evolution and corresponding energy deposition are calculated.

The hydrodynamic equations are used with the Poisson equation, photoionization

and a 34 reactions scheme, to solve for the densities of 15 species. Dependent on

the voltage pulse being negative or positive, negative or positive streamers originate,

respectively, at the triple junction and propagate along the dielectric surface with

different characteristics. Results showed that the type of pulses that better hold off

breakdown, were cyclic negative pulses, where the streamer ignites later and reduces

faster its initial velocity, therefore travelling a smaller distance.

A point-to-plane planar geometry in air at 1 atm, with a dielectric tilted 45o to the

plane and touching the HV electrode tip, was studied experimentally and numerically

using a 2D domain in [44], see Fig. 1.6c. The author sought to reproduce, through

simulation, the interesting experimental observation that, on the dielectric surface, at a

certain distance from the HV tip, a streamer would originate and start propagating into

the air. This distance would increase with increasing peak voltages. In the experiment,

also surface partial streamers were generated successively during the positive rising

part of a 4 Hz sinusoidal wave. A simple hydrodynamic description was used, where

the gas was simulated by abstract atoms, the reaction scheme included ionization,

attachment, recombination, but no photoionization. An initial Gaussian density seed

of electrons and positive ions was at the HV tip with a maximum of 1016 m−3 and

standard deviation of 200µm, elsewhere the density was 1013 m−3. With an applied DC

voltage of 30 kV and an initial surface-charge concentrated on the dielectric, 0.4 mm

away from the HV tip, the author managed to simulate a streamer originating at the

charged spot. The spot was 0.1 mm wide with an surface-charge density of 50 nC/ cm2.

Simulations with a profiled dielectric surface have been performed [45] where the

streamer dynamics on smooth and corrugated flat dielectric surfaces is analyzed in a

2D planar geometry, see Fig. 1.6d. Results, in qualitative agreement with experiments,

show a much slower effective streamer velocity along a square corrugated surface, where

progression happens due to sequential re-ignition of secondary streamers at neighboring

corrugation sites.

Dubinova in [18] uses a cylindrical geometry where a dielectric disk is tightly

stacked between two larger disk electrodes in a 150 mbar air gap, where the stressed

positive disk had a protrusion into the dielectric bulk, see Fig. 1.6e, while in Li [46]

a rectangular geometry is used where a plane dielectric is tightly stacked between
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a) b) c)

d) e) f)

g)

Figure 1.6: Schematic of simulated domains. a) Planar geometry of [42]. b) Planar
geometry of [43]. c) Planar geometry of [44]. d) Planar geometry of [45]. e) Cylindrical
geometry of [18]. f) Planar geometry of [46]. g) Cylindrical geometry of [28].
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two larger plane electrodes in a 1 atm air gap, see Fig. 1.6f. Both these geometries

have triple junctions capable of locally enhancing the electric field, however to initiate

the positive streamers in the simulations, either a homogeneous high initial electron

and positive ion density of 1013 m−3 is used [18], or a high localized density with a

maximum of 5×1018 m−3 at the anode is used [46]. For the conditions in the cylindri-

cal geometry of [18] both surface and volume streamers are generated simultaneously.

Both works agree that secondary electron emission (SEE) from the dielectric has a

negligible effect on streamer dynamics, while the surface’s photoemission increases the

streamers affi nity to the surface, as does a higher permittivity. Conclusions however

differ regarding which streamer, surface or volume, has higher velocity; experimental

data [47] however favor Li’s conclusion of faster surface streamers.

In [28], a similar geometry to [18] is used, but where the protrusion on the HV

anode is now close to the dielectric surface and into the air at 1 atm, see Fig. 1.6g.

Simulation results show strong branching1, with the dielectric surface attracting a

surface streamer which gains a higher velocity and electron density (∼ 1021 m−3), when

compared to the velocity and electron density (∼ 1019 m−3) of the volume streamer. It

is claimed that branching is caused by the instability of the development of the spatial

net charge layer in the streamer head, but is not further discussed. Contrary to results

from [18, 46], this research claims that SEE from the dielectric surface, leads to an

increased surface streamer velocity. The presented streamer dynamics, in particular

its loose attachment to the dielectric surface, is quite different from other results [46].

Since the dielectric radius of 2 mm is relatively small, it is possible that this is related

to ‘self-repulsion’(a 2D axi-symmetric effect) of the cylindrical streamer observed and

discussed in [18].

Review [48] focuses on streamer discharges in atmospheric-pressure non-equilibrium

plasmas and contains further references to numerical simulations done for discharges

in the presence of dielectrics.

1.2 This work

In the present work we move from the rather peaceful realm of the low current self-

sustaining discharge to beyond the quiet ‘enchanting beauty’ of a glow discharge, as

Raizer [20] put it, to the study of the transient wrathful realm of breakdown.

In doing stationary or non-stationary modelling, the numerical method needs an

initial approximation, or initial condition for the non-stationary case, to initiate iter-

ations that will hopefully lead to a converged final state. The most time-consuming

1Branching occurs where the streamer-head splits into two. The exact mechanism by which this
happens is still a topic of discussion.
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step in modelling by means of stationary solvers is, in many cases, finding this suitable

initial approximation. For instance, in the calculation of the current-voltage charac-

teristic of a setup, it is very helpful to use the self-sustained state as the starting

point. In this work a simple method is proposed to obtain this initial approximation

for low-current self-sustaining discharges, called the resonance method. It is a method

that implements a theoretical counterpart to the experimental procedure of aiding dis-

charge ignition with an external ionization source in order to obtain a self-sustained

discharge.

If the sole interest is obtaining the ignition-voltage of a setup, then it may be

possible to use the Townsend criterion. Its applicability is however limited to setups

with a weak field non-uniformity and negligible diffusion and photoionization. In this

work the Townsend criterion is extended to cases where the limitation on the field

non-uniformity is relaxed and where negative ions are taken into account.

In this work a particular point of interest is the relation between the ignition-voltage

and the breakdown voltage. The latter has received little attention in the literature.

Though there are plenty of studies on the effect of dielectric surfaces on the break-

down voltage, there seem to be no published measurements of the effect of dielectric

surfaces on ignition-voltages. Likewise, in a literature search for numerical modelling,

no work was found that pursued establishing a connection between the ignition and

breakdown voltage. In [20] it is argued that for the DC case, an overvoltage of 10%

above the ignition-voltage will trigger breakdown. In the present work a systematic

and straightforward procedure to predict the breakdown voltage is presented. It is

not based on performing time-consuming, trial and error, non-stationary calculations,

but rather relies on stationary calculations within the scope of the resonance method.

Other recent research, aimed at predicting the breakdown voltage, have resorted to AI

methods of machine learning to identify partial discharges as a precursor to breakdown

in HVDC [49], or artificial neural networks [50, 51] to predict the breakdown voltage

in polluted outdoor insulators.

Results in this work are for DC powered low current discharge setups where the

cathode remains cold, the plasma is in a low ionization degree, and the emission

mechanism is an effective secondary electron emission, comprising the combined effect

of ion impact, excited particle impact and photoemission. Throughout this work the

gas under consideration will be dry air at 1 atm. The kinetic scheme for air was

relatively simple, but has proved accurate in reproducing many experimental results.

Whenever possible, validation of the modelling results was sought by referencing the

available experimental data. Conditions were such that a fluid model of the charged

particles was well justified. Throughout this work special attention is given to a

simplified setup used to model the circuit breaker shown above in Fig. 1.1. This type
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of circuit breakers of industrial interest is known to break down, with the breakdown

path running along the insulator. The associated simplified setup has cylindrical

symmetry and consists of a dielectric disk tightly stacked between two disk electrodes.

With the results of this work, the applicability of the resonance method, designed to

calculate self-sustaining states, is broadened to be relevant for breakdown calculations.

The work builds on the decades long expertise in this field by the Madeira University

research team led by Prof. M. Benilov.

This text is organized into five chapters, the first being this Introduction. In Chap.

2 the fluid model equations are introduced for electrons, an effective positive ion and

three negative ions, along with the respective transport coeffi cients and kinetic scheme.

In this chapter a method is proposed for modelling the ignition of a self-sustaining

discharge. This method, coined the ‘resonance method’, was used as an in-house tool

of the IPFN research group in Madeira since at least 2016, and is here presented as

an expedient systematic stepwise procedure for modelling the ignition of a discharge.

Though introduced here in general terms, the resonance method will in subsequent

chapters be applied to coaxial cylinders, a point-to-plane geometry and to simple setup

containing a dielectric, determining their respective self-sustainment voltage and, on

occasion, aid the construction of a particular current-voltage characteristic.

In Chap. 3 an alternative method is proposed to evaluate the self-sustainment

voltage in volume discharges of drift dominated electronegative gases. It constitutes

an extension of the classical Townsend method to setups not reducible to 1D domains.

This approach is numerically less demanding than the resonance method, in that it

only requires the solution of the Laplace equation, and integration along electric field

lines. The extended method is validated against the resonance method and available

experimental data for three selected setups.

In Chap. 4, conditions are proposed for the resonance method to calculate voltages

for first-breakdown and for repetitive-breakdowns. The agreement between the latter

voltages calculated by the stationary resonance method and by the non-stationary

modelling method, is highlighted. The influence of the dielectric permittivity and

radius on the calculated voltages was studied. Characteristic time-scales for the for-

mation of self-sustaining discharges with and without surface-charge on the dielectric

are also evaluated. Some notes regarding the dynamics of breakdown at low overvolt-

ages are mentioned.

In Chap. 5 conclusions of this work are given and possible directions of future

research discussed.

All the modelling results included in this thesis were obtained using COMSOL

Multiphysics.



Chapter 2

A practical guide to modelling
low-current quasi-stationary gas
discharges: Eigenvalue,
stationary, and time-dependent
solvers

2.1 Introduction

The content of this chapter was adapted from the article [52] published in the Journal

of Applied Physics (2021).

The physics of many gas discharge systems has been understood reasonably well by

now. High-quality data for evaluation of transport and kinetic coeffi cients and tools

performing such evaluation are publicly available, e.g., LXCat [53] and LoKI [54].

Sophisticated numerical models have been developed for simulation of gas discharge

systems. Such models are virtually universally based on time-dependent solvers, which

give detailed information on spatiotemporal distributions of plasma parameters and

are indispensable for studies of discharges with fast temporal variations, such as high-

frequency discharges, pulsed discharges, streamer and spark discharges etc; e.g., [20,

55].

Time-dependent solvers can also be used for the computation of steady-state (or,

more precisely, quasi-stationary) gas discharges: an initial state of a discharge is spec-

ified and its relaxation over time is followed until a steady-state has been attained. An

alternative is to use stationary solvers, which solve steady-state equations describing

17
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a steady-state discharge by means of an iterative process unrelated to time relaxation.

Stationary solvers offer important advantages in simulations of steady-state discharges.

In particular, they are not subject to the Courant—Friedrichs—Lewy criterion or anal-

ogous limitations on time stepping. This allows one to speed up simulations, with

improvement by orders of magnitude depending on the modelled geometry, and is par-

ticularly important for modelling discharges with strongly varying length scales, e.g.,

corona discharges, where a variation of the mesh element size by orders of magnitude is

indispensable. Moreover, stationary solvers allow decoupling of physical and numerical

stability. Another useful feature of stationary solvers is their ability to compute pat-

terns of complex behavior that can manifest itself in the modelling of gas discharges

even in apparently simple quasi-stationary situations. Time-dependent solvers may

not provide important information in such cases. Several such examples referring to

the modelling of glow discharges and thermionic arc discharges can be found in [56].

Although most of the popular ready-to-use toolkits for gas discharge simulation

employ time-dependent solvers, e.g., nonPDPSIM [57] and Plasma module of commer-

cial software COMSOL Multiphysics R©, stationary solvers for gas discharge modelling
are provided by Plasimo [58]; COMSOL Multiphysics R© provides stationary solvers

for general partial differential equations; although the Plasma module of COMSOL

Multiphysics R© is intended to work with time-dependent solvers, it can still be used

with stationary solvers [56].

This work is concerned with modelling of low-current discharges, including the

Townsend and corona discharges, the aim being to develop an integrated approach

suitable for the computation of the whole range of existence of a quasi-stationary dis-

charge from its inception to a non-stationary transition to another discharge form,

such as the transition from the Townsend discharge to a normal glow discharge or

the corona-to-streamer transition. It is convenient to divide the task into three steps:

(i) modelling of the ignition of a self-sustaining discharge, (ii) modelling of the quasi-

stationary evolution of the discharge with increasing current, and (iii) the determina-

tion of the current range where a quasi-stationary discharge ceases to exist and the

above-mentioned non-stationary transition begins.

From the mathematical perspective, the problem of ignition of self-sustaining dis-

charges is an eigenvalue problem [59]. There are several methods that can be used

for its numerical solution. The method of choice, the so-called resonance method, is

physics-based and requires solving a boundary-value problem for steady-state linear

partial differential equations, which may be routinely done by means of ready-to-

use solvers, including commercial ones. Note that, in addition to being of theoretical

interest, understanding the ignition of self-sustaining discharges is important for appli-

cations: it is a useful reference point in the investigation of breakdown in high-voltage
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electrical equipment in low-frequency, e.g., 50 Hz, electric fields, where the time of

variation of the applied voltage is much longer than the ion drift time.

The solution describing the ignition of a self-sustaining quasi-stationary discharge,

obtained at the first step, may be conveniently extended to higher currents by means

of stationary solvers. The most time-consuming step when using stationary solvers is

usually finding a suitable initial approximation, which requires intelligent guesswork.

Fortunately, in simulations of low-current self-sustaining discharges this step can be

performed in a routine way using the resonance method. In this work, such inte-

grated approach is discussed in some detail and examples of its application to corona

discharges of different configurations and both polarities can be found in Sec. B of [52].

As the current of a quasi-stationary discharge increases, the discharge will lose

stability and a non-stationary transition into another discharge form occurs. The loss

of stability against small perturbations may be studied by means of solving the eigen-

value problem resulting from linear stability theory. In [60], this approach was used to

study the stability of the Townsend and glow discharges. An alternative approach to

investigation of stability is to apply a perturbation to a steady-state solution and to

follow the development of the perturbation by means of a time-dependent solver. This

approach allows studying stability against both small and finite perturbations. For

an example illustrating the application of this approach to a positive point-to-plane

corona, see Sec. V of [52].

The outline of this chapter is as follows. A model of low-current discharges in

high-pressure gases is briefly described in Sec. 2.2. Computation of initiation of self-

sustaining gas discharges is considered in Sec. 2.3. The eigenvalue problem, which

governs the discharge initiation, is formulated and its solution is obtained by the reso-

nance method. An integrated approach for calculation of low-current quasi-stationary

discharges, which is based on a combination of the resonance method and stationary

solvers, is discussed in Sec. 2.4. A brief summary is given in Sec. 2.5. In order not

to overload this chapter, some material has been combined into three Appendixes:

Appendix A, where the boundary conditions for drift-diffusion equations are briefly

discussed; Appendix B, concerned with plasmachemical processes and transport co-

effi cients of low-current discharges in high-pressure air; and Appendix C, where the

effective reduced temperature of a pair of ion species in high electric fields is briefly

discussed.



2. A practical guide to modelling low-current quasi-stationary gas
discharges: Eigenvalue, stationary, and time-dependent solvers 20

2.2 A model of low-current discharges in high-pressures
gases

Mathematical ideas discussed in this work apply to both hydrodynamic and kinetic

models of gas discharges. For brevity, here the consideration is restricted to the con-

ventional system of hydrodynamic equations describing low-current discharges in high-

pressure gases, which comprises equations of conservation and transport of charged

particles, excited states, and radicals produced in the discharge, and the Poisson equa-

tion:
∂nα
∂t

+∇ · Jα = Sα, (2.1)

Jα = −Dα∇nα − Zαnα µα∇φ, (2.2)

ε0∇2φ = −e
∑
α

Zαnα. (2.3)

Here subscript α identifies different species produced in the discharge (positive and

negative ions, the electrons, excited states, and radicals); nα, Jα, Dα, µα, Sα, and

Zα are, respectively, number density, density of transport flux, diffusion coeffi cient,

mobility, net volume rate of production, and charge number of species α; φ is the

electrostatic potential; e is the elementary charge; and ε0 is the permittivity of free

space. The source terms Sα in the equations of conservation for electrons and positive

ions include, in addition to terms describing production of these species in collisional

processes, the photoionization term Sph. The transport Eqs. (2.2) for the charged

particles are written under the so-called drift-diffusion approximation. Henceforth the

system of conservation equations with fluxes written as in (2.2), will, for brevity, be

referred to as the drift-diffusion equations. This system of equations includes also other

relevant equations, such as equations governing the photoionization and the electron

and neutral-gas energy equations. If motion of the neutral gas plays a role, then the

convective terms have to be added to the lhs of Eqs. (2.1) and the system of equations

includes also the Navier-Stokes equations.

The system of equations is supplemented by usual boundary conditions. In par-

ticular, boundary conditions for densities of charged particles on the surfaces of the

electrodes and dielectric surfaces (in case they border the active zone of the discharge)

may be written as described in Appendix A.

Most examples given in this work refer to low-current discharges in high-pressure

dry air and have been computed with the use of transport coeffi cients and a kinetic

scheme of plasmachemical processes described in Appendix B. The local-field and

quasi-stationary approximations are employed, so all the transport and kinetic coeffi -

cients, including those for the electrons, are assumed to depend on the local reduced
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electric field E/N and the neutral-gas temperature T . (Here E = |∇φ| is the electric
field strength and N is the number density of the neutral gas.) The conditions under

which these approximations can be safely employed without voiding their underlying

physical assumptions are treated in Appendix D. The kinetic scheme does not consider

excited states or radicals and takes into account one species of positive ions, which are

designated A+, the electrons, and three species of negative ions, O−2 , O−, and O−3 , so

that α = A+, e, O−2 , O−, O−3 in Eqs. (2.1)-(2.3). The photoionization is evaluated by

means of the three-exponential Screened-Poisson model [61]:

Sph(r) =
3∑
j=1

S
(j)
ph (r), (2.4)

with each of the terms satisfying the Screened-Poisson partial differential equation,

∇2S(j)ph (r)− (λjpO2)
2 S

(j)
ph (r) = −Ajp2O2I(r) (j = 1, 2, 3). (2.5)

Here Aj and λj are constants (parameters of the three-exponential fit function) given

in [61], pO2 is the partial pressure of molecular oxygen, and I(r) is the product of

the probability of ionization of a molecule at photon absorption and the local photon

production rate. The latter is assumed to be proportional to Si(r) the rate of ionization

of neutral molecules by electron impact and I (r) is written as [62]

I(r) =

(
0.03 +

15.7 Td

E/N

)
pq

p+ pq
Si(r), (2.6)

where p is the neutral gas pressure, pq/ (p+ pq) is a quenching factor that accounts

for the non-radiative de-excitation of radiating states of nitrogen molecules due to

collisions with other molecules. The quenching pressure pq is set equal to 30 Torr

[63, 64]. The examples reported in this work are limited to low discharge currents,

where the discharge-induced heating and motion of the neutral gas are negligible, and

refer to T = 300 K.

If dielectric surfaces exist in the studied setup, as will be the case in Chap. 4 and if a

time-dependent study is intended, then there is the possibility, that over time, charges

accumulate on the surface. The amount of surface-charge, ε0 (εDED − εGEG) ·n = σs,

is a quantity that is therefore now allowed to vary in time,

∂

∂t
ε0 (εDED − εGEG) · n =

∂σs
∂t

(2.7)

here and below, subscriptsD andG refer, respectively, to the dielectric and the gas; n is

the normal vector pointing from gas to dielectric surface; ε0 is the vacuum permittivity;

ε is the relative permittivity; E is the electric field.
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The boundary conditions for electron and ion densities are those specified at the

end of Appendix A. The electron emission flux is related to the flux of incident positive

ions by the effective secondary emission coeffi cient γ, which is assumed to characterize

all mechanisms of secondary electron emission (due to ion, photon, and excited species

bombardment) [20]. The rate of photoionization is set to zero at all solid surfaces,

S
(j)
ph = 0 (j = 1, 2, 3), similarly to [65, 66]. It is assumed that the surface-charge

density on the dielectric can change due to the influx of free charges from the gas side,

and therefore the boundary condition on the dielectric is

∂σs
∂t

= jn, (2.8)

where jn = jG · n is the normal component into the dielectric of the total conduction
current density. For stationary calculations, the boundary condition over a dielectric

surface will be that associated with the steady-state of the discharge, i.e. zero normal

component of current density,

jn = 0. (2.9)

The various modelled physical conditions in this work were such that the local-

field approximation and the quasi-stationary approximation were well justified. In

Appendix D a comment is made on the range of validity of these approximations for

atmospheric pressure discharges in air.

The numerical modelling reported in this work was performed with the use of

commercial software COMSOL Multiphysics R©. The following interfaces were used:
Transport of Diluted Species, or TDS (equations of conservation and transport of

charged species, Eqs. (2.1) and (2.2)), Electrostatics (the Poisson equation, Eq. (2.3)),

and Coeffi cient Form Partial Differential Equations (the Screened-Poisson equations,

Eqs. (2.5)). The streamline (Galerkin-Petrov) and crosswind diffusion stabilizations,

which are default options of the TDS interface, were kept activated in all cases except

where otherwise indicated. It should be stressed that both stabilizations are consistent,

i.e., the corresponding terms vanish when the iterations have converged.

2.3 Computing initiation of self-sustaining gas discharges

2.3.1 The eigenvalue problem

The condition of initiation of a self-sustaining gas discharge, where the discharge volt-

age is just suffi cient for the electron impact ionization to compensate losses of the

charged particles, is well known for wide parallel-plate electrodes, where the applied
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electric field is uniform and diffusion of the charged particles is of minor importance.

The condition reads

αd = ln (1/γ + 1) , (2.10)

where α is the Townsend ionization coeffi cient, d is the discharge gap width, and γ is

the effective coeffi cient of secondary electron emission from the cathode. An approx-

imate relation for other discharge configurations is obtained by replacing αd by the

so-called ionization integral, which is the line integral of α evaluated along the electric

field line that ensures the biggest value of this integral. Such an approach, though

theoretically incomplete can, under properly justified assumptions, be extended so as

to be applicable in cases of multidimensional volume discharges where the influence

of diffusion, photoionization and the presence of dielectric surfaces is minor. It re-

mains the main tool used in industrial applications; e.g., recent work [67] and in the

next chapter its derivation for a multidimensional geometry, will be validated against

solutions from the eigenvalue problem.

However, the problem of ignition of self-sustaining discharges may be solved by

accurate mathematical means and this solution is relatively simple [59]. At the ignition,

the charged particle densities are very low and the applied electric field is not perturbed

by plasma space-charge, so the rhs of Eq. (2.3) may be dropped and this equation

assumes the form of the Laplace equation,

∇2φ = 0. (2.11)

Let us first assume that no dielectric surfaces border the active zone of the discharge,

then perturbation of the applied electric field by surface-charges deposited on the di-

electric need not be considered as well. (The case of a discharge along a dielectric

surface will be considered in Sec. 2.4.2 below.) Therefore, the distribution of the elec-

tric field in the gap, for a given gap geometry, is governed solely by the applied voltage

U and may be found by means of standard electrostatic simulations disregarding the

presence of charged particles in the gap. Of course, the electric field distribution is

linear with respect to U and it is suffi cient to perform the electrostatic simulation only

once and then to scale the computed electric field distribution to each required value

of the applied voltage U . For definiteness, it is assumed that the applied voltage is

defined as the potential of the anode with respect to the cathode, thus U > 0.

At the ignition, there is no need to consider nonlinear processes, such as reactive

collisions involving two or more particles produced in the discharge (ions, electrons, ex-

cited states, or radicals), which includes the stepwise ionization and the recombination

of charged particles. Thus, there is no need to consider excited states and radicals and

it is suffi cient to consider the equations governing the charged particle distributions in

the gap, Eqs. (2.1) and (2.2) with α referring to the charged species.
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According to the conventional definition, the ignition-voltage is the value of the ap-

plied voltage U such that the applied electric field produces an ionization intensity just

suffi cient to compensate for the losses of charged particles, so a steady-state balance

of the charged particles can be reached. Therefore, the system of equations should be

considered in the stationary form, i.e., without derivatives with respect to time in Eqs.

(2.1). The resulting equations governing distributions of the ion and electron densities

reads

∇ · Jα = Sα, (2.12)

Jα = −Dα∇nα − Zαnα µα∇φ, (2.13)

where subscript α refers to the charged species (the ions and the electrons).

Since there is no need to consider nonlinear processes at the ignition, the source

terms Sα are linear with respect to the charged particle densities. Note that this

implies that the dependence of the photoionization rate Sph on the electron density ne
is linear. This is indeed the case as exemplified by Eqs. (2.4)-(2.6): I (r) the rate of

ionization of neutral molecules by electron impact is proportional to the local electron

density ne (r), therefore the dependence of Sph (r) on ne (r), while being non-local, is

linear. This is also the case in models where the photoionization rate is computed

by evaluation of an integral (e.g., [57, 64, 68, 69]), rather than by solving partial

differential equations.

Eqs. (2.12)-(2.13) are supplemented by Eqs. (2.4)-(2.6) or similar and boundary

conditions Eq. (A.6) with ξa = ξe = 1/2 or similar. The obtained boundary-value

problem, which is considered for a given distribution of the electric field in the gap,

governs distributions of the ion and electron densities at inception and is linear (with

respect to these densities).

We consider conditions where there is no external ionizing radiation and the ion-

ization mechanisms are direct ionization by impact of electrons, accelerated by the

applied electric field, and photoionization by photons produced in the discharge; there

is no thermionic, thermo-field, and field electron emission from the cathode, as well

as no electron photoemission caused by external radiation. Then the above-described

linear boundary-value problem governing distributions of the ion and electron densities

in the gap is homogeneous. Since the problem is considered for a given distribution

of the electric field in the gap, the applied voltage U is a control parameter of the

problem. The aim is to find a value U = U0 such that the problem describes the

inception of a self-sustaining discharge, i.e., a low-current steady-state discharge.

From the mathematical perspective, this is a boundary-value problem for a system

of partial differential equations (or integro-differential equations, if the photoionization

rate is computed by evaluation of an integral) and this problem is linear (with respect
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to the charged particle densities) and homogeneous (no external ionization terms).

For all values of the applied voltage U , the problem admits a trivial solution: the

ion and electron densities are zero at all points in the gap, which corresponds to a

situation where no discharge has been ignited. The task is to find a value of U such

that the problem admits, in addition to the trivial solution, also a nontrivial one. In

mathematical terms, this is an eigenvalue problem and U is the eigenparameter.

Thus, the ignition of a self-sustaining discharge is described by an eigenvalue

boundary-value problem for a system of partial differential or integro-differential equa-

tions governing distributions of the ion and electron densities. The physical sense of

the problem is that the applied voltage should be such that direct ionization by the

impact of electrons accelerated by the applied electric field and photoionization by

photons generated in the discharge are just suffi cient to compensate for the losses of

charged particles. In agreement with the above, in the special case of wide parallel-

plate electrodes the formulated eigenvalue problem may be reduced to one dimension

and will lead to the well-known self-sustainment condition (2.10), provided that similar

simplifications are applied: no diffusion, one ion species, no photoionization.

There is one more special case where the applied electric field can be considered

uniform and the formulated problem may be reduced to one dimension: the problem

of self-sustainment field in the cross section of a plane or cylindrical positive column

of a long low-current discharge. The formulated problem takes a form similar to the

well-known eigenvalue problem for an ordinary differential equation describing the

ambipolar diffusion of charged particles in the cross section of a positive column under

the assumption of quasi-neutrality; e.g., [55]. The solution to the latter problem is

well known: the cosine for a plane column and the zero-order Bessel function for a

cylindrical column; respectively, Eqs. (5.2.26), (5.2.27) and (5.2.35), (5.2.36) from [55].

At the discharge ignition, the transversal electric field is zero, the diffusion is free and

not ambipolar, and there is no quasi-neutrality. Therefore, the above-cited solution

[55] is valid for the distribution of the electron density ne at the discharge ignition

provided that the ambipolar diffusion coeffi cient is replaced by the electron diffusion

coeffi cients De. The ion density exceeds ne by the factor De/Di, where Di is the

diffusion coeffi cient of the ions.

In the general case, the formulated eigenvalue problem for the ignition of a self-

sustaining discharge is multidimensional and its numerical solution is not quite trivial.

Three methods have been employed for solving this problem and they have been com-

pared with regard to which has a more user-friendly implementation. The first method

consists of the direct application of an appropriate eigenvalue solver to the eigenvalue

problem as it was formulated, considering U as the eigenparameter. The solver will

return a set of eigenvalues (spectrum) and eigenfunctions associated with each of the
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eigenvalues. This spectrum has to be analyzed and all but one real eigenvalue for U

should exist whose associated vector eigenfunction has all components positive in the

domain, where the vector eigenfunctions have components, each describing the number

density distribution of one of the ion species or of the electrons. A second method is

based on the study of the stability of the ‘no-discharge’solution, i.e. a discharge where

all density distributions and the total current are zero, while the potential can have

any value. It is experimentally known that there is a voltage value above which the

‘no-discharge’solution becomes unstable. A method based on stability analysis results,

again, in an eigenvalue problem associated with the same equations, but supplemented

with a time variation term for the densities, ∂nα/∂t. The eigenparameter (λ) is now

the coeffi cient of time in an exponential factor multiplying the densities; exp (λt)nα.

Monitoring the spectrum of eigenvalues obtained for ever increasing values of U , will

single out an eigenvalue λ that eventually becomes zero, i.e., represents the point of

neutral stability characterizing the voltage at which the ‘no-discharge’solution loses

stability. The voltage at which neutral stability is obtained is the self-sustainment

voltage. The third method for solving the stated eigenvalue problem has been called

the resonance method and is based on solving a modified eigenvalue problem, in the

sense that the associated discharge would be non-self-sustained. Physically it would

correspond to the original problem but with an extra production term for the elec-

trons and positive ions. Solving the problem for ever increasing values of voltage will,

for a voltage high enough, show a first resonance in the current-voltage characteristic

(CVC) of the setup, precisely at the self-sustainment voltage. This method will be

explained in detail in the next section.

The three methods are mathematically equivalent as far as computation of the

self-sustainment voltage is concerned, so the questions are which method is easier to

implement and use, and which method has wider applicability. The method based

on the direct numerical solution to the eigenvalue problem requires computing and

analyzing the spectrum only once, while the stability method requires doing this several

times (for different U values). Thus, the stability method is more laborious. Finding

the spectrum by means of an eigenvalue solver, required in the framework of the first

and second methods, is a nonlinear task and, as such, requires care in certain cases;

in particular, distinguishing between physical and artificial eigenvalues is not always

easy. In contrast, the stationary boundary-value problem, describing the non-self-

sustained discharge in the framework of the third (resonance) method, is linear and its

solution is straightforward. In all geometries to which it was applied, the resonance,

and thus the self-sustainment voltage, were readily identifiable and the procedure was

straightforward, fast, and reliable.

The resonance method, as the methodologically easier to implement, is preferred
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and will be explained in detail in the next section.

2.3.2 The resonance method

The third approach is physics-based and may be described as follows. The stationary

boundary-value problem governing distributions of the ion and electron densities at

inception, formulated in Sec. 2.3.1, is considered and the equations of conservation of

the electrons and one of the positive ion species are supplemented by a term describing

an external ionization source. In other words, Eqs. (2.12) for the electrons (α = e)

and one of the positive ion species (α = i) are replaced by the following equations:

∇ · Je = Se +W, (2.14)

∇ · Ji = Si +W, (2.15)

where W is the external ionization term. This term does not depend on the particle

densities, in particular, on the electron density, nor on the applied voltage, and is

specified more or less arbitrarily. For example, it may be set constant in space in one-

dimensional (1D) problems and a Gaussian function with a maximum on the discharge

axis is a natural choice in axially symmetric problems.

The obtained stationary boundary-value problem describes the non-self-sustained

discharge, generated in the same plasma-producing gas and the same electrode con-

figuration. The problem is solved for different values of the applied voltage U . On

physical grounds, one can expect that a kind of resonance will appear when U becomes

equal to the self-sustainment voltage.

Note that the problem is linear and the external ionization source W is the only

inhomogeneous term. Therefore, the absolute values of W are irrelevant as far as the

task is restricted to the calculation of the self-sustainment voltage: the scaling of W

affects the scaling of the number densities of the charged particles and does not affect

the self-sustainment voltage. On the other hand, some care in the choice of the scaling

of W is useful if this method is used as a part of the integrated approach for modelling

quasi-stationary low-current discharges in the whole range of their existence starting

from the inception; a comment on this point is provided in Sec. 2.4.1.

The stationary boundary-value problem describing the non-self-sustained discharge,

being linear (and inhomogeneous), may be routinely solved by means of ready-to-

use solvers; hence no need for manual discretization. For example, a linear solver

for boundary-value problems for systems of partial differential equations provided by

COMSOL Multiphysics R© is used in the modelling reported in this work. Note that

COMSOL automatically activates the nonlinear solver option in the case where the

default streamline and/or crosswind diffusion stabilization is kept activated in the TDS
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interface, since the stabilization terms appearing in the species conservation equations

are nonlinear. However, the number of iterations required is very small, typically no

more than two, so the procedure remains the same whether stabilization is activated

or not.

Similarly to the previous one, this method is in essence another way to solve the

eigenvalue boundary-value problem for the system of partial differential or integro-

differential equations, formulated in Sec. 2.3.1, which finds not the whole spectrum

but rather only the self-sustainment voltage. The method was introduced and termed

the resonance method in the preceding work [59]. Of course, the very idea of finding

a real eigenvalue by varying the eigenparameter and searching for this or that kind

of resonance is quite obvious. For example, a change of sign of the determinant of

the system of algebraic equations obtained by a finite-difference discretization of a

boundary-value problem was used in [70, 71] and [72] as an indication of bifurcation of

regimes of current transfer to, respectively, cold cathodes of glow discharges and hot

thermionically-emitting cathodes of arc discharges.

The resonance method is, at least for now, the method of choice for calculation

of the ignition of self-sustaining discharges. The method has given useful results in a

wide range of conditions and complex geometries, e.g., it was used for investigation of

discharge ignition in air between concentric-sphere and concentric-cylinder electrodes

with microprotrusions of different shapes on the surface of the inner electrode in a

wide range of air pressures [73]. Investigation of discharge ignition along a dielectric

surface will be considered in Chap. 4. Typical calculations for 2D geometries take

about 10 min on a desktop computer.

An important advantage of the resonance method is its physical transparency. In

particular, it allows the use of this method not only for simulations of ignition of a self-

sustaining discharge, but also as a module of a more general code for the modelling of

quasi-stationary (self-sustained) discharges. This is described in the following sections.

2.4 Integrated approach for calculation of low-current
quasi-stationary discharges

As discussed in the Introduction, stationary solvers represent an appropriate tool for

the modelling of quasi-stationary discharges and offer important advantages over time-

dependent solvers. The most time-consuming step when using stationary solvers is

usually finding a suitable initial approximation, which requires intelligent guesswork.

Fortunately, in simulations of low-current self-sustaining discharges this step can be

performed in a routine way using the resonance method. The resonance method pro-
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vides a very accurate first approximation for a steady-state solution at a very low

current, describing the onset of the self-sustaining discharge. Once this solution has

been computed, it can be used as a starting point for the simulations with the dis-

charge current being gradually increased. The solution for each current serves as an

initial approximation for simulations with the next current value.

In this way, one obtains an integrated approach for modelling quasi-stationary low-

current discharges in the whole range of their existence starting from the inception.

This integrated approach is described in this section and examples of its application

are given.

2.4.1 Combining the resonance method and stationary solvers

The procedure is illustrated by the flow chart shown in Fig. 2.1 and may be described

as follows. At the first step, the non-self-sustained discharge is computed as described

in Sec. 2.3.2. We remind that, as discussed in Sec. 2.3.1, the plasma space-charge is

neglected at this step, i.e., the rhs of the Poisson equation Eq. (2.3) is dropped or,

in other words, the Poisson equation (2.3) is replaced by the Laplace equation (2.11).

Nonlinear processes, such as reactive collisions involving two or more particles pro-

duced in the discharge, are neglected as well. The discharge voltage U is increased

in small increments ∆U until the discharge current becomes negative. Let us desig-

nate by U1 the highest voltage for which the current is still positive and by I1 the

corresponding current.

The second step consists in recalculation of the solution obtained at the first step

for U = U1, but with the discharge current being the control parameter instead of the

voltage. This amounts to solving the same problem as at the first step, but considering

the discharge voltage as an unknown that has to be found from the condition that the

discharge current (an integral characteristic of the solution) takes the given value I1.

This problem is nonlinear and, in principle, requires iterations. However, since the

initial approximation being used represents the exact solution for I = I1, only one

iteration is needed without damping.

At the third step, the solution for I = I1 is recalculated with the external ionization

term W in Eqs. (2.14) and (2.15) switched off. The convergence is very fast provided

that ∆U is suffi ciently small (typically, no more than three iterations are needed

without damping if ∆U does not exceed 1% of U). The discharge voltage will slightly

increase (by an amount smaller than ∆U) and the obtained value will represent a little

more accurate estimate of the self-sustainment voltage.

At the fourth step, the solution for I = I1 is recalculated with account of the

space-charge, i.e., with the Laplace equation replaced by the Poisson equation, and
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(I < 0)

STEP 1
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the discharge voltage U to current I
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STEP 2

The external ionization term is turned offSTEP 3

The account of nonlinear processes is
turned on => A complete solution
describing the onset of the self­sustained
discharge is found

STEP 4

Computation of the non­self­sustained
discharge with external ionization source
for given U (no nonlinear processes)

Discharge current I is gradually increased
=> The quasi­stationary low­current
discharge is computed in the whole range
of its existence

STEP 5

Figure 2.1: Integrated approach for modeling of quasi-stationary low-current dis-
charges.
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with account of all relevant nonlinear processes and with the stabilization activated as

needed (if it has not been activated right from the first step). The change in U will

be very small and only one iteration is needed provided that I1 is small enough, say,

in the order of nanoamps or smaller, which can be ensured by rescaling the external

ionization term W , used in the resonance method. As the outcome of this step, one

obtains a complete solution describing the onset of the self-sustained discharge.

At the fifth, and final, step, the quasi-stationary low-current discharge is com-

puted in the whole range of its existence. The simulations are performed with the

discharge current being gradually increased. The solution describing the onset of the

self-sustained discharge, obtained at the previous step, is used as a starting point, and

the solution for each current is used as an initial approximation for simulations with

for next current value.

We conclude this section with a few practical hints. In gas discharge modelling,

the species conservation and transport equations are frequently solved in the loga-

rithmic formulation (e.g., this option is available in the Plasma module of COMSOL

Multiphysics R©), where the dependent variables are logarithms of the species number
densities. The logarithmic formulation ensures that the number density of any of the

species is never negative. However, such formulation introduces additional nonlin-

earity and was found to be less effi cient for steady-state modelling than the original

formulation (the one with the dependent variables being the species number densities).

The modelling reported in this work has been performed in the original formulation

and no sizable negative values of species densities have appeared provided that the

numerical mesh is not too coarse.

It is essential that the code allows specifying not only the discharge voltage as a

control parameter but also the discharge current, with the possibility of an easy and

seamless switching between the two. A standard way to specify the discharge current in

gas discharge modelling is an implicit one, by means of introducing an external circuit

comprising a voltage source and a ballast resistance. In COMSOL Multiphysics R©,
an alternative is available: one can use the "Global Equation node" option to specify

discharge current directly, without introducing an external circuit.

The modelling of the quasi-stationary low-current discharge in the whole range

of its existence (the fifth above-described step) starts with the discharge current I

being the control parameter. As I gradually increases, it may be helpful to switch the

control parameter to U , in order to accelerate convergence. When simulating corona

discharges, this can usually be done when the discharge voltage has increased by about

200 V from the ignition-voltage.

It often happens in modelling that iterations converge for a value of the control

parameter, but fail to converge for the next value, no matter how small the increment
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of the control parameter. Since a solution can turn back or join another solution

but cannot just disappear, such a break-off represents a failure of the method. The

most frequent reason is that there is a region of fast variation, which is not adequately

resolved by the numerical mesh being used (e.g., the corona attachment to the electrode

has expanded and is no longer adequately resolved). A refinement of the mesh solves

the problem. Adaptive mesh refinement is a powerful tool.

The second most frequent reason is that an extreme point of the CVC or a turning

point has been encountered: a code cannot pass through these points if operated with,

respectively, U or I as a control parameter. An obvious fix is to switch the control

parameter. If the CVC has a complex form, the control parameter has to be switched

several times in order to compute the whole range of existence of the steady-state

solution.

2.4.2 Discharge along a dielectric surface

Consider now a case where the discharge active zone is in contact with a dielectric

surface. The formulation of the eigenvalue problem describing the ignition of a self-

sustaining discharge, given in Sec. 2.3.1, needs to be slightly modified in such cases,

as well as the procedure of solving it by means of the resonance method.

Continuing to consider low-current quasi-stationary discharges (which implies, in

particular, that the time of variation of the applied voltage is much longer than the ion

drift time), one can treat surface-charges on a dielectric surface as quasi-stationary.

Therefore, the surface is under the floating potential and the boundary condition for

the electric field follows from the condition of the normal component of the local current

density being equal to zero at each point of the surface. This boundary condition is

linear and homogeneous with respect to the ion and electron densities. Therefore,

while distributions of the ion and electron densities in low-current quasi-stationary

self-sustained discharges vary proportionally to the discharge current I, the electric

field distribution is independent from I. This is similar to what happens in the case

where no dielectric surfaces border the active zone of the discharge, considered in the

preceding sections. It is this independence of the electric field distribution from I that

makes the concept of self-sustaining (ignition) voltage applicable in the presence of

dielectric surfaces. The difference from the no-dielectric case is that the electric field

in the presence of a dielectric is coupled to distributions of the charged particles and

cannot be computed independently.

Thus, one needs to consider a stationary boundary-value problem involving partial

differential and possibly also integro-differential equations, governing distributions of

ions and electrons in the gap, and the Laplace equation governing the electrostatic
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potential, with the aim to determine the value U = U0 of applied voltage such that the

problem admits a non-trivial solution for the particle densities. Note that this problem

becomes ill-posed in the no-discharge situation, where the ion and electron densities

are zero and the boundary condition of zero normal component of the current density

at the dielectric becomes trivially satisfied and brings no information concerning the

electric field. Therefore, it is unclear whether this problem can be solved by means

of standard eigenvalue solvers. However, it can be effi ciently solved by means of the

resonance method.

The procedure is as follows. The first and second steps of the procedure described

in Sec. 2.4.1 are performed with the boundary condition of zero normal component

of the electric field at the dielectric surfaces (instead of zero normal component of

the current density). As in the case where no dielectric is present, the electric field

distribution is decoupled from the ion and electron distributions and is linear with

respect to U , so it is suffi cient to perform the electrostatic simulation only once.

At the next step, the obtained solution for I = I1 is recalculated with the boundary

condition of zero normal electric field at the dielectric surfaces being replaced by the

condition of zero normal component of the current density. This involves solving the

equations governing the distributions of the ions and the electrons in the gap and the

Laplace equation for the electrostatic potential, and these equations are now coupled

through the boundary condition of zero normal current density. The problem is non-

linear and the distributions computed at the previous steps are used as an initial

approximation.

Then the third to fifth steps of the procedure described in Sec. 2.4.1 are performed

and thus the discharge is computed in the whole range of its existence. These steps

do not need to be modified due to the presence of the dielectric and are performed in

the same way as described in Sec. 2.4.1.

In chapter 4 the procedure presented here for the resonance method will be exten-

sively applied for the case of a setup containing a dielectric surface.

2.5 Summary

The work aims at developing an integrated approach for the computation of low-

current quasi-stationary discharges, from the inception to a non-stationary transition

to another discharge form, such as a transition from the Townsend discharge to a

normal glow discharge or the corona-to-streamer transition. This task involves three

steps: (i) modelling of the ignition of a self-sustaining discharge, (ii) modelling of

the quasi-stationary evolution of the discharge with increasing current, and (iii) the

determination of the current range where the quasi-stationary discharge ceases to exist
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and the above-mentioned non-stationary transition begins. Each of these three steps

is considered in some detail with a number of examples, referring mostly to discharges

in atmospheric-pressure air.

The ignition of self-sustained gas discharges is governed by a multidimensional

boundary-value eigenvalue problem for a system of stationary partial differential equa-

tions (and possibly also integro-differential equations), formulated in Sec. 2.3.1. The

physical sense of the problem is that the applied voltage should be such that direct ion-

ization by the impact of electrons accelerated by the applied electric field and photoion-

ization by photons generated in the discharge are just suffi cient to compensate for the

losses of charged particles. There are two special cases where the applied electric field

may be considered as uniform and the formulated problem is reduced to one dimension.

The first one is the case of discharge ignition between wide parallel-plate electrodes.

The formulated eigenvalue problem leads to the well-known self-sustainment condition

(2.10) in this case, provided that similar simplifications are applied. The second spe-

cial case is the one of self-sustainment field in the cross section of a plane or cylindrical

positive column of a long low-current discharge. In this case, the formulated problem

takes a form similar to the well-known eigenvalue problem for an ordinary differential

equation describing the ambipolar diffusion of charged particles in the cross section of

a positive column under the assumption of quasi-neutrality. The difference is that at

the discharge ignition the transversal electric field is zero, the diffusion is free and not

ambipolar, and there is no quasi-neutrality.

In the general case, the formulated eigenvalue problem for the ignition of a self-

sustaining discharge is multidimensional and its numerical solution is not trivial.

In Sec. 2.3.2, among other methods to solve the eigenvalue problem for the self-

sustainment voltage, the resonance method was recognized as the one easier to imple-

ment and use. The method is based on solving linear partial differential equations and

can be implemented with the use of standard solvers, including commercial ones. It is

robust and fast and has given useful results in a wide range of conditions and complex

geometries.

An important advantage of the resonance method is its physical transparency. In

particular, it allows one to use this method not only for simulations of ignition of self-

sustaining discharges, but also as a module of a more general code for the modelling

of quasi-stationary self-sustained discharges. Such an integrated approach, based on

a combination of the resonance method and stationary solvers, is described in Sec.

2.4.1 and allows modelling of quasi-stationary low-current discharges in the whole

range of their existence starting from the inception. The use of stationary solvers

instead of time-dependent ones dramatically reduces the computation time, and this

reduction is especially large in discharges with strongly varying length scales, such as



2. A practical guide to modelling low-current quasi-stationary gas
discharges: Eigenvalue, stationary, and time-dependent solvers 35

corona discharges, where a variation of the mesh element size by orders of magnitude

is indispensable.

The integrated approach to the modelling of quasi-stationary low-current dis-

charges offers the possibility of calculating all existing stationary solutions, or, in other

words, all steady-states of the discharge that are theoretically possible, regardless of

their stability and whether or not they can be observed in a particular experiment.

An example of the usefulness of this feature is the possibility of computation of time-

averaged characteristics of pulsed negative coronas by means of a stationary solver,

discussed at the end of Sec. IV B of [52]. Note that time-dependent solvers, while being

an adequate tool for studies of spatiotemporal evolution of individual pulses, cannot

be used for direct calculation of time-averaged characteristics of a pulsed corona.

The stability of the computed steady-states may be studied separately. Stability

against small perturbations may be studied by means of solving the eigenvalue problem

resulting from the linear stability theory. An alternative approach to the investigation

of stability is to employ the same code that was used for calculation of the steady-state

solution with the stationary solver replaced by a time-dependent one; a perturbation is

applied to the steady-state solution and the development of the perturbation is followed

by means of the time-dependent solver. An example of application of a time-dependent

solver for investigation of stability of a positive point-to-plane corona discharge against

perturbations of various amplitudes is given in Sec. V of [52].

In the following chapters the resonance method will be used to evaluate the self-

sustaining state and corresponding voltage for several geometries. In Chap. 4, it will

be used to establish a connection between self-sustainment and breakdown voltages.



Chapter 3

Validation of the Townsend
criterion for ignition of volume
gas discharges

3.1 Introduction

The content of this chapter was adapted from the article [74] published in the journal

Plasma Sources Science and Technology (2023).

In accurate mathematical terms, the ignition of self-sustained electrical discharges

is governed by an eigenvalue problem for linear partial differential equations describ-

ing ion and electron transport in the applied electric field, as explained in Chap. 2.

It should be expected that the classical Townsend ignition criterion may be derived

from this eigenvalue problem under appropriate assumptions. In the case of parallel-

plate geometry, where the electric field distribution is one-dimensional, such derivation

should be simple. However, the derivation for multidimensional cases is less obvious.

It is of interest to find this derivation, to identify the relevant assumptions, and to

evaluate the error introduced by these assumptions in the computation of the ignition

(self-sustainment) voltage. The latter may be performed by means of comparison

of the ignition-voltage, computed by means of the Townsend criterion, with values

obtained by exact numerical solution of the general eigenvalue problem.

A mathematical validation and evaluation of the accuracy of a classical formula

are of considerable scientific interest. In the case of the Townsend criterion, such

treatment will also be useful for applications: the ignition-voltage of self-sustained

discharges represents an important reference point in the investigation of breakdown

in high-voltage electrical equipment in low-frequency, e.g., 50 Hz, electric fields, where

the time of variation of the applied voltage is much longer than the ion drift time.

36
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There is a vast literature on different aspects of the Townsend criterion and the

(closely related) Paschen law. Without trying to cover this extensive field, we only

mention a few examples. Data on cathode processes of importance for discharge initi-

ation in DC uniform electric fields are compiled and analyzed in [75] for argon and in

[76] for a number of rare and molecular gases. Equations describing the discharge ini-

tiation in RF fields and combined RF and DC fields have been derived in [77] and [78],

respectively. A transition from the Townsend discharge to the streamer breakdown

was studied in [79]. The effect of electrode shape on Paschen curves was studied in [80]

and the conclusion was drawn that for some ranges of conditions the discharge may

develop several spatial configurations. While understanding of the initial ionization

processes in dense media, including in liquids, remains incomplete (e.g., [12, 81]), it

was shown in [82] that in certain cases the discharge inception voltages in liquids can

be estimated using the Townsend criterion. An application of the Townsend criterion

to the analysis of operation of internal combustion engines is considered in [83]. The

determination of molecular parameters relevant to the discharge initiation in high-

pressure gases was considered in [84]. A review of the discharge-initiation physics in

connection with nanomaterial-based ionization gas sensors is given in [85]. Paschen’s

law for argon with account of nonuniform DC electric field, the loss of electrons due

to radial diffusion, and the applied axial magnetic field has been derived in [86]. Eval-

uation of inception voltages for quasi-uniform air gaps bounded by dielectric layers is

performed in [87]. One can hope that the mathematical validation and evaluation of

the accuracy of the classical Townsend criterion, proposed in this chapter, will be a

useful addition to these and other works and will contribute to a wider use of their

results.

The outline of this chapter is as follows. In section 3.2, the eigenvalue problem

for ignition of volume discharges is formulated in the drift approximation and a mul-

tidimensional Townsend criterion derived. Verification of the Townsend criterion by

comparison with an accurate numerical solution of the general eigenvalue problem is

reported in section 3.3. Three examples of discharge ignition in high-pressure air are

considered, two of them referring to negative coronas in concentric-cylinder and point-

to-plane configurations, and one to an axially symmetric configuration with weakly

nonuniform electric field. Conclusions are summarized in section 3.4.
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3.2 Eigenvalue problem for ignition of volume discharges
and multidimensional Townsend criterion

3.2.1 Drift-approximation eigenvalue problem for discharge ignition

The general eigenvalue problem governing discharge ignition is discussed in detail in

Sec. 2.3.1 of the previous chapter. One of the effects taken into account in the model

of the last chapter was the diffusion of the charged particles. The diffusion may play a

role, for example, in the ignition of discharges along dielectric surfaces. On the other

hand, in volume discharges the diffusion is normally a minor effect compared to drift.

With the diffusion neglected, the eigenvalue problem is formulated as follows.

The system of conservation equations describing drift of charged particles of various

species in an applied electric field reads

∇ ·
(
Zψnψ µψ E

)
= Sψ. (3.1)

Here ψ = i+, i−, e, where the indices i+, i−, and e are attributed to different species

of positive ions, different species of negative ions, and the electrons, respectively; Zψ,

nψ, and µψ are the charge number, number density, and mobility of species ψ; E is

the applied electric field, and the source terms Sψ describe volume production and

removal of particles of species ψ. Since the charged particle densities at discharge

inception are very low, the applied electric field E is unperturbed by plasma charges

and its distribution is considered as known. The source terms Sψ account for all

relevant processes: direct ionization by electron impact, photoionization, attachment,

detachment, charge exchange etc. Nonlinear processes, including multistep ones (e.g.,

stepwise ionization) and ion-electron and ion-ion recombination, are insignificant since

charged particle densities at discharge inception are very low, hence the source terms

Sψ are linear with respect to the charged particle densities. Heating of the neutral

gas is insignificant as well. |Zψ| = 1 since no multiply charged ions are produced

at inception. The mobilities µψ and the kinetic coeffi cients, which appear when the

source terms Sψ are expanded to describe different processes, are evaluated in the

local-field approximation.

According to the conventional definition, the ignition-voltage is a value of the

applied voltage such that the applied electric field produces an ionization level just

suffi cient to compensate losses of the charged particles, so a steady-state balance of the

charged particles can be reached. Therefore, Eqs. (3.1) are written in the stationary

form, i.e., without derivatives with respect to time.

The system of governing equations includes also equations describing the pho-

toionization rate, which may be computed either by evaluation of an integral (e.g.,
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[57, 64, 68, 69]) or by solving partial differential equations (e.g., [61, 88]). It should be

stressed that in all the cases the dependence of the photoionization rate on the electron

density is linear. Note that the modelling reported in this work has been performed

using the three-exponential Screened-Poisson photoionization model [61].

In the general eigenvalue problem for discharge ignition, formulated in Chap. 2,

the particle conservation equations are written with account of diffusion and represent

second-order partial differential equations of elliptic type, therefore the equation for

each species requires a boundary condition at each boundary of the computation do-

main, including both electrodes. In contrast, Eqs. (3.1), where diffusion is neglected,

are partial differential equations of the first order and the equation for each species

requires a boundary condition at one of the electrodes. There are no fluxes of positive

ions from the anode and the boundary conditions at the anode may be written as

nψa = 0 (ψ = i+) . (3.2)

The indices a and c here and further denote values at the anode and cathode, respec-

tively.

Fluxes of negative ions, if any, from the cathode are absent and the electron density

at the cathode is governed by the ion-electron emission,

nψc = 0 (ψ = i−) , (3.3)

µecnecEc = γ
∑
ψ=i+

µψcnψcEc −
1

2
necC̄ec. (3.4)

Here γ is an effective coeffi cient of secondary electron emission from the cathode, which

is assumed to be the same for different species of positive ions, and C̄ec =
√

8kTec/πme

is the mean speed of chaotic motion of the electrons evaluated at the cathode. The

second term on the rhs of Eq. (3.4) describes flux of the electrons backscattered to the

cathode after suffering one or more collisions with neutral particles; e.g., Appendix A

and Appendix A of [75]. Note that the emission of electrons from the cathode can

take place also due to photoeffect. Photoeffect can be important for discharge ignition

by short voltage pulses, with duration smaller than the time of ion drift. In quasi-

stationary conditions, the role of photoeffect is typically small, but in any case it can

be taken into account in terms of parameter γ, as is done frequently (e.g., section 4.7.2

of book [20]).

The above-described boundary-value problem, describing drift of the ions and the

electrons in an applied electric field, is linear with respect to the ion and electron

densities. Moreover, the problem does not contain external ionization terms, which

means that from a mathematical point of view it is homogeneous. For all values

of the applied voltage, the problem admits a trivial solution: the ion and electron
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densities are zero at all points in the gap. This solution describes a situation where

the voltage is applied, but no discharge has been ignited. One needs to find the

value of the discharge voltage for which the problem admits also a nontrivial solution.

This nontrivial solution will describe the particle densities at discharge inception and

the corresponding discharge voltage value will represent the inception voltage. In

mathematical terms, this is an eigenvalue problem for a system of linear homogeneous

partial differential equations (e.g., [89]) and the discharge voltage is eigenparameter.

Further details are discussed in Sec. 2.3.1 of Chap. 2.

It should be emphasized that the above-described eigenvalue problem takes into

account all processes that may affect the discharge inception. (We remind that non-

linear processes and neutral gas heating are insignificant since the charged particle

densities are very low at discharge inception.) Volume processes are accounted for in

the source terms Sψ in Eqs. (3.1) and include direct ionization by electron impact,

photoionization, attachment, detachment, charge exchange etc. Processes at the cath-

ode surface are described in terms of the effective ion-electron emission coeffi cient γ

in the boundary condition (3.4); note that this is the only additional approximation,

beyond the drift local-field approximation, employed in the above-described eigenvalue

problem. If only the processes of direct ionization, photoionization, and attachment

are taken into account while all the other processes are neglected, then the above-

described eigenvalue problem is reduced to the model proposed in the recent paper

[90] to study the inception of positive coronas.

3.2.2 Transforming the eigenvalue problem

Since the applied electric field, being unperturbed, satisfies Gauss’s law with zero

volume charge density, ∇ ·E = 0, Eqs. (3.1) may be rewritten in the form

ZψE · ∇
(
nψ µψ

)
= Sψ. (3.5)

Let us designate by z a coordinate measured along a field line, say, from the cathode

to the anode. Then E = −Eez, where ez is a unit vector directed along the field line
(needless to say, this vector varies from one point of a line to another), and Eqs. (3.5)

may be written as

ZψE
∂

∂z

(
nψ µψ

)
= −Sψ. (3.6)

This is an equivalent form of Eqs. (3.1), describing drift of charged particles of various

species.

Boundary condition (3.4) may be rewritten in a more compact form:

necµec = γ′
∑
ψ=i+

µψcnψc, (3.7)
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Figure 3.1: Coeffi cient cγ , characterizing the effect of backscattering of emitted elec-
trons to the cathode.

where

γ′ = cγγ, cγ =

(
1 +

1

2

C̄ec
vec

)−1
, (3.8)

and vec = µecEc is the electron drift speed evaluated at the cathode. For convenience,

graph of the quantity cγ for dry air is shown in Fig. 3.1. The electron drift speed

and temperature were evaluated as described in Appendix B. N is the total number

density of neutral particles, so Ec/N is the reduced electric field at the cathode.

Equations describing the photoionization rate involve the electron density, but not

densities of the ions. Since, additionally, ion-electron and ion-ion recombination and

similar nonlinear processes are insignificant at discharge ignition, the net production

rates Sψ of the electrons and negative ions at discharge ignition do not depend on

the densities of positive ions. It follows that the equations of conservation of the

electrons and negative ions, Eqs. (2.12) [or, equivalently, (3.6)] for ψ = e, i−, do not

involve the densities of positive ions. The same is true for the boundary conditions

for the negative ions, Eqs. (3.3). On the other hand, the boundary condition for the

electrons, Eq. (3.4), does involve the positive ion densities. Hence, the evaluation of

the negative-particle densities and the photoionization rate cannot be decoupled from

the evaluation of the density of positive ions and the eigenvalue problem (3.1)-(3.4)

needs to be solved as a whole.

However, one can transform the boundary condition for the electrons, Eq. (3.4) [or,

equivalently, (3.7)], to an equivalent form which would not involve densities of positive

ions. Multiplying Eqs. (3.6) by Zψ, summing over ψ, and taking into account that

the rhs of the obtained equation vanishes due to charge conservation in reactions, one
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obtains

∂

∂z

∑
ψ

µψnψ

 = 0. (3.9)

The meaning of this equation is clear: electrical conductivity of the ionized gas is

constant along each field line; a feature of media which are subject to Ohm’s law in

cases where the electric field distribution is Laplacian.

Equating the electrical conductivities at the anode and the cathode and making

use of the boundary conditions (3.2), (3.3), and (3.7), one can write

µeanea +
∑
ψ=i−

µψanψa = µecnec

(
1 +

1

γ′

)
. (3.10)

This relation applies to points of the same field line positioned on the cathode and the

anode and is valid for each field line. It may be viewed as an equivalent form of Eq.

(3.4), i.e., as a boundary condition for the electron density specifying the ion-electron

emission at the cathode surface. As desired, this boundary condition does not involve

densities of positive ions.

Thus, the eigenvalue problem (3.1)-(3.4), supplemented with equations describing

the photoionization rate, which governs the ignition of a self-sustaining drift-dominated

discharge and describes drift of charged particles in an applied electric field, may be

split: in order to find the ignition-voltage, it is suffi cient to solve the eigenvalue problem

comprising Eqs. (3.1) [or (3.6)] for ψ = e, i−, boundary conditions (3.3) and (3.10), and

equations for the photoionization rate, which describes drift of only negative particles.

3.2.3 Multidimensional Townsend criterion

Since the photoionization rate depends on the electron density values in the whole

discharge region, the equations of conservation of the electrons and negative ions, Eqs.

(3.6) for ψ = e, i−, in the general case cannot be solved for a single field line without

regard of the electron and negative ion densities in the rest of the discharge region.

Therefore, analytical solution of the eigenvalue problem formulated in the preceding

section with account of photoionization is hardly possible.

Let us assume that photoionization is insignificant and may be discarded. Then

Eqs. (3.6) for ψ = e, i− represent a system of linear ordinary differential equations,

which may be solved separately for each field line without regard of the densities along

other field lines. If the electric field is uniform in space, coeffi cients of these differential

equations are constant and the equations may be solved analytically; e.g., equation

(16) on p. 709 of [91].

In the general case, coeffi cients of the linear ordinary differential Eqs. (3.6) for

ψ = e, i−, being functions of E, vary with z, therefore an analytic solution is still
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hardly possible. However, there are cases where a partial integration is possible: these

are cases of electropositive gases and electronegative gases provided that the detach-

ment is insignificant. The electron source term Se in these cases may be written

as Se = µeE (α− η)ne, where α is the Townsend ionization coeffi cient and η is the

Townsend integral attachment coeffi cient, which takes into account all relevant attach-

ment reactions (η = 0 for electropositive gases). Equation (3.6) for ψ = e becomes

independent of the densities of negative ions and may be readily integrated to give

µene = µecnece
K , (3.11)

where

K = K (z) =

∫ z

0
(α− η) dz (3.12)

is the so-called ionization integral.

Let us sum Eqs. (3.6) for the negative ions. Taking into account that
∑
ψ=i−

Sψ =

µeEηne, one obtains

∂

∂z

∑
ψ=i−

nψ µψ

 = ηµene. (3.13)

Substituting Eq. (3.11), integrating over z from 0 to za (along the whole field line from

the cathode to the anode), and making use of boundary condition (3.2), one obtains∑
ψ=i−

µψanψa = µecnec

∫ za

0
ηeKdz. (3.14)

It follows from Eq. (3.11) that µeanea = µecnece
Ka . [Here Ka = K (za) is the

ionization integral evaluated along the whole field line.] Substituting this relation and

Eq. (3.14) into, respectively, the first and second terms on the lhs of the boundary

condition (3.10), one may transform this boundary condition to

nec (W1 −W2) = 0, (3.15)

where

W1 = eKa +

∫ za

0
ηeKdz, W2 = 1 +

1

γ′
. (3.16)

Equation (3.15) must be satisfied for each field line. Hence, there are two possibil-

ities for each field line: either nec = 0, or W1 = W2. If nec the electron density at the

cathode is zero for a given field line, then the electrical conductivity is zero at all points

of the line [cf. Eqs. (3.9) and (3.10)] and therefore the charged particle densities equal

zero as well. Therefore, the equality W1 = W2 should hold for at least one field line,

otherwise the charged particle densities will be zero in the whole calculation domain

or, in other words, only the trivial solution will exist.
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Equation (3.15) was obtained by partial integration, under certain assumptions,

of the eigenvalue problem (3.1)-(3.4), governing the ignition of self-sustained drift-

dominated discharges and describing ion and electron transport in the applied electric

field. However, Eq. (3.15) only requires knowledge of the input parameters of the

problem: the Townsend ionization and attachment coeffi cients α and η and the sec-

ondary electron emission coeffi cient γ′, specified as functions of the reduced electric

field, and the spatial distribution of the applied electric field. Thus, Eq. (3.15) repre-

sents a necessary condition for the problem (3.1)-(3.4) to be solvable, i.e., to admit a

nontrivial solution for distributions of the ion and electron densities. In mathematical

terms, (3.15) is an equation for the eigenvalue parameter. From the point of view of

gas discharge physics, Eq. (3.15) represents the multidimensional Townsend ignition

criterion.

Note that the terms on the rhs of the first Eq. (3.16) describe contributions of,

respectively, electrons and negative ions to the electrical conductivity of the ionized

gas at the anode. Substituting into the second term the expression η = α − dK/dz,
which follows from Eq. (3.12), one can obtain for W1 −W2 a compact formula

W1 −W2 =

∫ za

0
αeKdz − 1

γ′
. (3.17)

Note also that in the particular case η = 0, where no attachment takes place and

hence no negative ions are present, the second term on the rhs of the first Eq. (3.16)

vanishes and one can write

W1 = exp

∫ za

0
αdz, W2 = 1 +

1

γ′
. (3.18)

Expressions for the Townsend criterion available in the literature refer to a sin-

gle field line. For brevity, let us call this case one-dimensional (1D). The Townsend

criterion (3.15) is reduced to

W1 −W2 = 0 (3.19)

in this case. This 1D version of the Townsend criterion must be consistent with

accurate expressions for the Townsend criterion available in the literature. Indeed, Eq.

(3.19), supplemented with Eq. (3.18), represents the well-known Townsend criterion

in electropositive gases, except that the conventional effective ion-electron emission

coeffi cient γ is replaced with the coeffi cient γ′, accounting for the return of a fraction

of emitted electrons to the cathode after suffering one or more collisions with neutral

molecules. On the other hand, Eq. (3.19), supplemented with Eq. (3.17), coincides

with the Townsend criterion obtained by noting that the integral on the rhs of Eq.

(3.17) represents the total number of ionizations along the field line per one electron

emitted from the cathode (e.g., [92]).
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Figure 3.2: Example of application of the multidimensional Townsend criterion (3.15),
(3.16) to a point-to-plane negative corona. l: distance from the axis of symmetry
measured along the cathode surface. Solid: W1 for different field lines and for three
values of the applied voltage. Dashed: W2. Dotted: reduced electric field at the
cathode surface.

To see how the multidimensional version of the Townsend criterion should be ap-

plied, let us consider as a simple example a point-to-plane negative corona. Typical

values of quantities γW1 and γW2 are plotted in Fig. 3.2 for different field lines, which

are identified by l the distance from the axis of symmetry measured along the cathode

surface, and for three values of the applied voltage U1 < U2 < U3. Also plotted is a

typical distribution of the reduced electric field at the cathode surface. With the use

of the data exemplified by Fig. 3.1, the quantity W2 may be evaluated in terms of Ec;

its values for all three values of the applied voltage are very close to each other and

are represented by the same line.

If the applied voltage is low, then the inequality W1 < W2 will hold for all field

lines as illustrated by the curve U = U1 in Fig. 3.2. It was shown above that nec = 0

for all field lines and, consequently, the charged particle densities are zero at all points

of all field lines, meaning zero current density. Hence, no discharge is possible for

this voltage. As the applied voltage is increased, a voltage value is reached at which

Eq. (3.19) is satisfied for a field line coinciding with the axis; the curve U = U2 in

Fig. 3.2. The current can flow along this line. nec = 0 for all the other field lines,

meaning that no current can flow along any off-axis field line. Hence, there is a self-

sustaining discharge localized at the axis (and in its vicinity, because of the diffusion

of the electrons and the ions in the radial direction).

As the applied voltage is increased further, U = U3, Eq. (3.19) is satisfied for an off-
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axis field line or, more precisely, for a set of field lines forming an axially symmetric

cylinder-like surface. One could think of a stationary solution with current flowing

along this surface and no current both inside and outside the surface, although this

solution is likely to be unstable since perturbations inside the surface will be amplified.

The ignition-voltage, by definition, is the minimum voltage for which a self-sustain-

ing discharge is possible, and this is U = U2. Thus, the eigenvalue problem governing

the ignition-voltage in multidimensional configurations leads to the requirement that

the applied voltage be just high enough for the Eq. (3.19) to be satisfied for at least

one field line; an intuitively clear result.

3.2.4 Discussion

Equation (3.15), which is a corollary of the eigenvalue problem (3.1)-(3.4), governing

the ignition of a self-sustaining drift-dominated discharge, represents the Townsend

ignition criterion as expected, and may be viewed as a natural extension of the classical

criterion to multidimensional configurations.

The validity of the Eq. (3.15) is limited by the neglect of the diffusion of the charged

particles, of the photoionization, and, in the case of electronegative gases, also of the

detachment. It is well known that the photoionization is a major effect in positive

corona-like configurations. Therefore, the Townsend criterion may be useful only for

negative corona-like configurations and configurations with weakly nonuniform electric

field.

Neglecting detachment prevents straightforward application of Eq. (3.15) to elec-

tronegative gases. However, it still provides useful information: the Townsend criterion

in the form (3.15), (3.16), which accounts for the attachment but neglects the detach-

ment, gives an upper estimate of the inception voltage, while the Townsend criterion in

the form (3.15), (3.18) neglects the attachment (and thus the presence of negative ions

altogether) and therefore gives a lower estimate of the inception voltage. Moreover,

one can try to obtain an accurate estimate for the inception voltage by means of the

Townsend criterion in the form (3.15), (3.16) if the Townsend attachment coeffi cient

η is replaced with an effective attachment coeffi cient, which would take into account,

in an approximate way, also the detachment.

3.3 Verification of the Townsend criterion by results of
numerical simulations

In this section, the Townsend criterion is applied to three examples of discharge ignition

in high-pressure room-temperature air, two of them referring to negative corona-like
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configurations and one to a configuration with weakly nonuniform electric field. The

results are compared with those obtained by an accurate numerical solution of the

general eigenvalue problem that governs discharge ignition, as in Chap. 2, and takes

into account diffusion, photoionization, and the presence of multiple ion species with

various reactions. The numerical solution of the eigenvalue problem was obtained by

means of the resonance method, introduced in the previous chapter, for a reasonably

detailed plasmachemical model of high-pressure dry air summarized in Appendix B.

The photoionization rate was evaluated by means of the three-exponential Screened-

Poisson model [61].

The data from Tab. B.1 of Appendix B were used for the evaluation of ionization

and integral attachment coeffi cients α and η in the Townsend criterion. η was evaluated

as

η = η2 + η3, (3.20)

where η2 and η3 are Townsend coeffi cients of production of ions O− via two-body

(dissociative) attachment and of ions O−2 via three-body attachment. The electron

mobility, needed for the evaluation of γ′, was estimated as given in Appendix A.

As mentioned in the preceding section, one can try to improve the Townsend

criterion (3.15), (3.16) by replacing the Townsend integral attachment coeffi cient with

an effective attachment coeffi cient, which would take into account, in an approximate

way, also the detachment. In the case of air, one can try using the effective attachment

coeffi cient proposed in [62]:

η = η2
k8nO2N

k6nN2 + k7nO2 + k8nO2N
. (3.21)

Here k6 is the rate constant of associative detachment from O−, k7 is the rate constant

of charge transfer from O− to O2; k8 is the rate constant of conversion of O− to O−3 ;

nN2 and nO2 are the number densities of, respectively, nitrogen and oxygen molecules;

and the total number density of neutral molecules is expressed as N = nN2 +nO2 . The

above rate constants were evaluated using formulas from Tab. B.1 of Appendix B.

The negative corona experiment [93] is considered as the first example. The con-

figuration is that of coaxial cylinders, the diameter of the inner cylinder was either

0.239 cm or 0.0178 cm, the diameter of the outer cylinder was 9.75 cm.

It should be emphasized that the methodologically correct way to assess the ac-

curacy of an approximate relation is to compare it with the exact solution of the full

theoretical model wherever available, since a direct comparison of an approximate re-

lation with experiment would characterize not only the quality of the approximations,

but in the first place the suitability of the theoretical model used. On the other hand,

a comparison of results given by the full theoretical model with experimental results
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Figure 3.3: Reduced ignition field at the surface of negative corona electrode. Con-
ditions of the experiment [93]: concentric-cylinder corona in air, two values of the
diameter of the inner electrode, 2r0, diameter of the outer electrode 9.75 cm, pres-
sure varying over the range 0.1− 35 atm. Lines: numerical solution of the eigenvalue
problem. Scatters: experimental data [93]. Solid, triangles: 2r0 = 0.239 cm. Dashed,
squares: 2r0 = 0.0178 cm. Dotted: cγ = 1, 2r0 = 0.239 cm.

illustrates the accuracy that the theory can claim. In Fig. 3.3, the computed ignition

field is compared with the experimental data obtained in a wide pressure range. The

dotted line was computed without account of backscattering of emitted electrons to

the surface of the cathode and coincides with the corresponding line in figure 8 of [62].

The calculated values depend on the choice of the effective ion-electron emission

coeffi cient γ. The exact value of γ in a particular experiment is not known, and in

the modelling γ was taken equal to 10−4 and no attempt was made to adjust it to

best fit the experimental results. Therefore, the agreement between the calculated and

measured data within about 10% (15% for a few points) seems to be quite satisfactory,

especially for illustrative purposes as in this work.

The data in Tabs. 3.1 and 3.2 illustrate the effect of longitudinal diffusion over the

accuracy of the 1D Townsend criterion under conditions of the negative corona exper-

iment [93]. Here U and UT are values of the ignition-voltage evaluated by means of,

respectively, numerical solution of the eigenvalue problem, obtained without account

of photoionization, and the 1D Townsend criterion (3.19). Thus, the deviation of the

ratio UT /U from unity represents a natural measure of the accuracy of the Townsend

criterion. Another natural measure is a residual appearing in the Townsend criterion if

it is evaluated at the applied voltage equal to the numerical value (U). Following tra-

dition, we write the 1D Townsend criterion (3.19) in logarithmic form, lnW1 = lnW2
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γ U ( kV) Ka ∆T (%) UT ( kV) UT
U − 1 (%)

10−6 25.14 15.00 −0.46 25.21 0.32

10−4 22.90 10.49 −0.34 22.94 0.17

10−3 21.56 8.24 −0.27 21.59 0.13

10−2 19.96 5.98 −0.19 19.98 0.09

Table 3.1: Effect of longitudinal diffusion over the accuracy of the Townsend crite-
rion in air without account of attachment. Coaxial-cylinder negative corona under
conditions of experiment [93], 2r0 = 0.239 cm, pr0 = 0.1 atm cm, different values of
secondary electron emission coeffi cient.

pr0
( atm cm)

U ( kV) Ka ∆T (%) UT ( kV) UT
U − 1 (%)

0.01 4.59 9.66 −1.51 4.64 1.11

0.1 23.37 −11.04 −0.35 23.41 0.17

1 152.04 −3281 −0.07 152.07 0.02

Table 3.2: Effect of longitudinal diffusion over the accuracy of the Townsend crite-
rion in air without account of detachment. Coaxial-cylinder negative corona under
conditions of experiment [93], 2r0 = 0.239 cm, different values of pressure.

[in the case without negative ions, this form is reduced to the conventional condition of

the ionization integral being equal to ln (1 + 1/γ′)], and define the normalized residual

as

∆T =
lnW1 − lnW2

lnW1 + lnW2
, (3.22)

where W1 and W2 are evaluated at the applied voltage equal to the numerical value

(U). Also shown in the tables is the ionization integral Ka evaluated at the applied

voltage equal to the numerical value. Note that all the data in the tables, as well in

the subsequent Tabs. 3.3-3.5, are independent of the numerical mesh (they did not

change when each mesh element in the computation domain was split in half).

U in Tab. 3.1 was evaluated numerically disregarding the presence of negative ions

and photoionization and UT was evaluated by means of the 1D Townsend criterion

(3.19), (3.18). Thus, Tab. 3.1 corresponds to conditions in electropositive gases. The

only source of error in the Townsend criterion compared to the exact numerical solution

in this table is the longitudinal diffusion, which is taken into account in the numerical

solution but not in Eqs. (3.19), (3.18). One can see that the error is quite small for all

values of γ, below about 0.3% for the ignition-voltage values and 0.5% as far as the

residual is concerned. Note that there is a difference of about 1.2 to 1.4 between Ka

and the value of ln
(
1 + γ−1

)
, which is due to γ′ being different from γ.

The data in Tab. 3.2 were evaluated with account of the presence of negative

ions, which are produced via attachment, but without account of detachment. More
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pr0 Eigenvalue problem Townsend criterion (3.19) Exp.
( atm cm) a) b) c) d) (3.16), (3.20) (3.18) (3.16), (3.21) (3.23) [93]

0.014 5.60 5.70 5.72 5.68 5.77 5.73 5.73 5.81 5.1
0.119 26.16 26.23 26.69 26.10 26.73 26.14 26.16 27.10 24
1.083 153.21 153.24 163.12 148.39 163.15 148.42 152.77 166.58 157

Table 3.3: Ignition voltages for the negative corona in the concentric-cylinder config-
uration under conditions of experiment [93], in kV. 2r0 = 0.239 cm, different values
of pressure. a)Full model. b)No photoionization. c)No photoionization and no detach-
ment. d)No photoionization and no attachment.

precisely, U was evaluated numerically disregarding detachment and photoionization

and UT was evaluated by means of the 1D Townsend criterion (3.19), (3.16). The

secondary electron emission coeffi cient γ was taken equal to 10−4, as well as when

calculating the data in Tabs. 3.3 and 3.4 below. Again, the longitudinal diffusion is

the only source of error in the Townsend criterion compared to the exact numerical

solution. The maximum error is somewhat bigger than that in Tab. 3.1, however still

quite small, of the order of 1% as the inception voltage is concerned, including for the

higher values of pr0, when the ionization integral Ka is strongly negative.

The effect of diffusion, the photoionization, and the detachment over the self-

sustainment voltage and over the accuracy of the Townsend criterion is illustrated

by Tabs. 3.3-3.5 for different discharge configurations. The tables show the ignition-

voltage values obtained by numerically solving the eigenvalue problem in various ap-

proximations and from various forms of the Townsend criterion. Although the most

important aspect for the purposes of this work is the accuracy of various forms of

the Townsend criterion compared to the numerical solution of the eigenvalue problem

subject to appropriate approximations, it is nonetheless interesting to illustrate the

accuracy of the results given by the full eigenvalue problem compared to experiment.

Therefore, experimental values of the inception voltage are included in Tabs. 3.3-3.5.

Table 3.3 refers to a negative concentric-cylinder corona. Results of the numerical

solution of the eigenvalue problem have a transparent physical meaning. Comparison

of the data in columns a) and b) shows that the disregard of the photoionization results

in a weak increase of the ignition-voltage. The disregard of detachment results in a

further increase of the ignition-voltage (columns b) and c)), which is weak for lower

pressures but becomes more appreciable for higher values. The disregard of attachment

results in a decrease of the ignition-voltage (columns b) and d)), which is weak for low

pressures but becomes stronger for higher pressures. One can see that the models
c) and d), which disregard, in addition to the photoionization, also detachment or

attachment, provide upper and lower estimates for the inception voltage given by the

modelb), which accounts for the full kinetics involving negative ions (but still neglecting
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the photoionization). Of course, this result should have been expected. Moreover, since

the effect of photoionization is weak, the models c) and d) provide reasonably accurate

upper and lower estimates also for the full modela).

The ignition-voltages given by the 1D Townsend criterion in the form (3.19), (3.16),

(3.20) are very close to the values given by numerical solution of the eigenvalue problem

without account of photoionization and detachment (column c)). The voltages given by

the 1D Townsend criterion in the form (3.19), (3.18) and the values given by numerical

solution of the eigenvalue problem without account of photoionization and attachment

(column d)) are close as well. (This is another indication that the effect of longitudinal

diffusion is within approximately 1%.) It is unsurprising therefore that the two versions

of the Townsend criterion, Eqs. (3.19), (3.16), (3.20) and Eqs. (3.19), (3.18), provide

reasonably accurate upper and lower estimates for the inception voltage given by the

numerical solution of the full modela).

For lower pressures, the upper and lower estimates provided by Eqs. (3.19), (3.16),

(3.20) and by Eqs. (3.19), (3.18) are close to each other, indicating that the effect

of the presence of negative ions on the ignition-voltage is weak in these conditions.

With increase of pressure, however, the gap between the lower and upper estimates

widens and reaches approximately 15 kV for pr0 = 1.083 atm cm, thus significantly

exceeding the difference between the full model and the experiment (approximately

4 kV). Therefore, it is worth trying to obtain a more accurate theoretical estimate for

the inception voltage. One can see that the 1D Townsend criterion (3.19), (3.16) with

the effective attachment coeffi cient given by Eq. (3.21), which was proposed in [62],

provides high accuracy for all pressures.

A popular approximate form of the 1D Townsend criterion in electronegative gases

is ∫
α≥η

(α − η) dz = ln

(
1 +

1

γ′

)
, (3.23)

where the integral on the lhs is evaluated over the ionization zone, i.e., the section of the

field line where α ≥ η; e.g., equation (12.14) on p. 346 of the book [20] (note that the
latter equation involves γ, rather than γ′). For comparison, values of ignition-voltage

given by this formula are shown in Tab. 3.3 as well. One can see that these values

for high pressures are significantly less accurate than those given by the Townsend

criterion (3.19), (3.16), (3.21).

Table 3.4 refers to a point-to-plane negative corona under conditions of experiment

[94]. This is a 2D configuration, so the multidimensional Townsend criterion (3.15)

should be used. Its application is illustrated by Fig. 3.2, which actually refers to the

experimental conditions [94] with point-to-plane distance d = 5 mm, the Townsend
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d Eigenvalue problem Townsend criterion (3.15) Exp.
( mm) a) b) c) d) (3.16), (3.20) (3.18) (3.16), (3.21) [94]

5 4.28 4.28 4.29 4.27 4.33 4.31 4.31 4.5

8 4.82 4.83 4.84 4.82 4.88 4.86 4.86 4.7

10 4.95 4.95 4.96 4.94 5.01 4.98 4.98 5.0

14 5.31 5.32 5.33 5.31 5.38 5.35 5.35 6.1

Table 3.4: Ignition voltages for the negative corona in the point-to-plane configuration
under conditions of experiment [94], in kV. 1 atm, tip curvature 0.2 mm, variable
point-to-plane distance d. a)−d): same as in table 3.

criterion in the form (3.15), (3.16), (3.20), U1 = 4.2 kV, U2 = 4.33 kV, U3 = 4.5 kV,

and Ec/N corresponding to U = 4.33 kV. As should have been expected, the maximum

value of W1 in this case is reached for the field line coinciding with axis of symmetry.

The mesh elements in the modelling were triangles, and the data in Tab. 3.4 did

not change when each mesh element in the computation domain was split in half. (The

same applies to the Tab. 3.5.)

The data shown in Tab. 3.4 follow the same pattern as those in Tab. 3.3, except

that the values of the ignition-voltage, estimated using different approximations for a

given point-to-plane distance, are all very close to each other. This means that the

effect of the presence of negative ions over the ignition-voltage is insignificant for all

values of the point-to-plane distance. This is a consequence of the small tip curvature

(0.2 mm): the electric field in the bulk of the ionization zone significantly exceeds the

critical field and hence the attachment is insignificant. The only source of error in

the Townsend criterion in the form (3.15), (3.16), (3.20) or in the form (3.15), (3.18)

compared to the exact numerical solution in the columnc) or d) is diffusion, which is

both longitudinal and transversal in this geometry. One can see that the effect of

diffusion again is around 1%.

In Fig. 3.4, a setup with a weakly non-uniform electric field studied in the ex-

periment [25] is shown: an axially symmetric configuration consisting of a cylindrical

dielectric spacer stacked between two disk electrodes. Also shown is an example of

distribution of the electron density at discharge inception, obtained from the numerical

solution of the eigenvalue problem. Note that the computed charged particle density

distributions at inception are proportional to the discharge current due to the linear-

ity of the eigenvalue problem; the absolute values shown in the figure correspond to

the discharge current of 100µA. (This seems to be a reasonable value for the incep-

tion current given the relatively large area of the discharge attachments, which are

rings with a radius of approximately 7.5 mm.) Note also that the secondary electron

emission coeffi cient was set equal to 0.03 in the modelling performed for this setup.
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Figure 3.4: Setup of the experiment [25]. The computed distribution of the electron
density at discharge inception corresponds to d = 4 mm and the discharge current of
100µA.

The application of the multidimensional Townsend criterion (3.15) to this setup is

illustrated by Fig. 3.5. The quantities W2 for all three values of the applied voltage

(6.3, 6.46, and 6.6 kV) are very close to each other and are represented by the same

line. As should have been expected, the maximum value of W1 is reached for the field

line that begins and ends at the roundings of the electrodes (and not for the field line

coinciding with the axis of symmetry, in contrast to the point-to-plane configuration

to which Fig. 3.2 and Tab. 3.4 refer). However, the points where the maximum-W1

field line begins and ends do not coincide with the points of maximum of the surface

electric field Ec, again in contrast to the point-to-plane configuration to which Fig. 3.2

and Tab. 3.4 refer.

Computed data referring to the setup shown in Fig. 3.4 are given in Tab. 3.5.

The data in the last column of the table were obtained by averaging the experimental

mean DC breakdown fields for cases where the dielectric spacer material is Teflon,

Plexiglas (for d = 4 mm), Pyrex glass, and Macor glass ceramic, given in table III of

[25]. Note that while the experimental values refer to the DC breakdown (flashover),

the breakdown voltage in configurations with weakly non-uniform electric field usually

is close to the ignition-voltage.

One can see that the accuracy of the Townsend criterion in this more complex 2D

geometry with a weakly non-uniform field is comparable to the accuracy in the two

previous geometries. The effect of diffusion again is around 1%.
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Figure 3.5: Application of the of the multidimensional Townsend criterion (3.15) to the
device shown in figure 3.4. d = 2 mm. l: distance from the symmetry axis measured
along the cathode surface. Solid: quantityW1, evaluated by means of equations (3.16),
(3.20), for different field lines and three values of the applied voltage. Dashed: W2.
Dotted: reduced electric field at the cathode surface for U = 6.46 kV.

d Eigenvalue problem Townsend criterion (3.15) Exp.
( mm) a) b) c) d) (3.16), (3.20) (3.18) (3.16), (3.21) [25]

2 6.24 6.24 6.52 6.16 6.46 6.10 6.16 6.0

4 9.92 9.92 10.45 9.62 10.35 9.52 9.79 9.6

Table 3.5: Ignition voltages under conditions of experiment [25], in kV. 1 atm, variable
gap length d. a)−d): same as in Tab. 3.3.
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3.4 Conclusions

An eigenvalue problem governing ignition of volume discharges is formulated in the

drift approximation. Diffusion of the charged particles is neglected, while other poten-

tially relevant effects, in particular, photoionization and the presence of multiple ion

species with various reactions, are taken into account. By means of partial integration

the problem may be split: in order to find the ignition-voltage, it is suffi cient to solve

equations describing drift of electrons and negative ions coupled with equations for the

photoionization rate, without expressly considering positive ions, also in cases where

the ion-electron emission from the cathode plays a role.

By performing further partial integrations under certain assumptions, the Townsend

ignition (self-sustainment) criterion is derived. The assumptions limiting the validity

of the derived criterion are the neglect of the diffusion of the charged particles, of the

photoionization, and, in the case of electronegative gases, of the detachment.

The effect of diffusion is presumably insignificant for volume discharges. The ne-

glect of photoionization limits the applicability of the criterion to negative corona-like

configurations and configurations with weakly non-uniform electric field.

Neglecting detachment prevents straightforward application of the Townsend cri-

terion to electronegative gases. However, it still provides useful information: the

Townsend criterion in the form (3.15), (3.16), which accounts for the attachment but

neglects the detachment, gives an upper estimate of the inception voltage, while the

Townsend criterion in the form (3.15), (3.18), which neglects the attachment, gives a

lower estimate. Moreover, one can try to obtain an accurate estimate for the incep-

tion voltage by means of replacing the integral attachment coeffi cient in the Townsend

criterion in the form (3.15), (3.16) with an effective coeffi cient, which would take into

account, in an approximate way, also the detachment.

The Townsend criterion is applied to three examples of discharge ignition in high-

pressure air, two of them referring to negative coronas in concentric-cylinder and point-

to-plane configurations and one to an axially symmetric configuration with weakly

nonuniform electric field. In all the cases, the ignition-voltage was computed also by

an accurate numerical solution of the general eigenvalue problem governing discharge

ignition. The results of the numerical solution show that the effect of photoionization in

these cases is weak as expected. The comparison of the results obtained from different

forms of the Townsend criterion with those obtained by the numerical solution of

the eigenvalue problem shows that the neglect of diffusion produces an error in the

ignition-voltage of the order of 1% or less in all the cases.

The lower and upper estimates of the ignition-voltage, obtained from the Townsend

criterion without account of attachment or with account of attachment but not de-
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tachment, are close to each other in most, but not all, cases considered. This indicates

that the effect of negative ions over the inception voltage is weak in these cases; a con-

clusion confirmed by the numerical results. In other cases, the gap between the lower

and upper estimates is significant. The Townsend criterion in the form (3.15), (3.16),

(3.21), which employs the effective attachment coeffi cient in air taking into account,

in an approximate way, also the detachment, gives a virtually exact ignition-voltage

in all the cases considered and is in this sense a safe bet.

The above results provide validation and extension of the Townsend self-sustainment

criterion, which remains widely used as an engineering tool for evaluation of the

ignition-voltage in conditions of industrial interest, e.g., for estimation of the hold-

off capabilities of high-voltage switchgear operating in low-frequency fields.

Let us try to formulate practical recommendations on when the use of the Townsend

self-sustainment criterion is justified, and when one should instead resort to a numer-

ical solution of the general eigenvalue problem governing discharge inception. Both

approaches require previous knowledge of the spatial distribution of the applied electric

field, which may be found by means of standard electrostatic simulations disregarding

the presence of charged particles in the gap. The ionization and integral attachment

coeffi cients, α and η, and the reduced electron mobility µeN should be specified as

functions of the reduced electric field in order to use the Townsend criterion. A large

amount of data and numerical tools for evaluation of these quantities are publicly

available; e.g., databases [53, 54]. The general eigenvalue problem, in principle, takes

into account all processes that may affect the discharge inception, including diffusion

of the charged particles, direct ionization by electron impact, photoionization, attach-

ment, detachment, charge exchange etc, and therefore requires information on relevant

plasmachemical processes, photoionization, and transport coeffi cients. For example,

the model summarized in Appendix A may be used for high-pressure dry air.

From the computational point of view, the evaluation of the Townsend criterion

is straightforward, except for cases where the position of the electric field line that

maximizes the quantity W1 is not known in advance, as is the case for the setup

shown in Fig. 3.4. The general eigenvalue problem may be readily solved by means of

the resonance method introduced in Chap. 2. The method is physics-based, robust,

and may routinely be implemented with the use of ready-to-use solvers for linear

partial differential equations, including commercial solvers such as those provided by

the computational platform COMSOL Multiphysics R©. Still, implementation of the
solution of the general eigenvalue problem is a more complex task than the evaluation

of the Townsend criterion.

Therefore, the Townsend self-sustainment criterion is the method of choice for vol-

ume discharges in negative corona-like configurations and configurations with weakly
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non-uniform electric field. The numerical solution of the general eigenvalue problem

is required in cases where the Townsend criterion is not applicable, e.g., for positive

corona-like configurations. If the goal is to develop a tool which can be used for a wide

variety of conditions, the numerical solution of the general eigenvalue problem is the

method of choice.



Chapter 4

Calculation of self-sustainment
voltages in the presence of a
dielectric surface

4.1 Introduction

Let us assume that, for a certain setup, the applied voltage coincides with the self-

sustainment voltage (SSV). Then, over the course of time a steady-state discharge will

develop across the setup with current limited to low values. The characteristic time-

scale of the development of the steady-state discharge is the time-scale of accumulation

of surface-charges on the dielectric, which is slower than the processes occurring in the

bulk of the discharge.

A given setup can also be characterized by a certain breakdown voltage (BDV).

At this voltage it will undergo a transient and fairly rapid transition from a low

residual current discharge regime, to one of high current discharge. This will be our

working definition for breakdown, as also commonly used in the electrical engineering

community, and the BDV will be the minimum voltage bringing about the setup’s

breakdown in a circuit with no current limitation. Elsewhere, e.g. [55] p. 544, the

term breakdown is used for what we call the setup’s SSV. When the setup includes

a dielectric along the discharge path between the electrodes, breakdown is also called

flashover, indicating that a conduction channel gets created over the dielectric surface

accompanied by the emission of a flash of light. The corresponding voltage is also

called the surface flashover voltage, but we will keep with the term BDV.

The physical mechanism involved in breakdown, whether in air or in vacuum, is still

mainly characterized as streamer formation and propagation until the gap is bridged.

In the case of a setup with a strongly non-uniform field, and likewise no restriction on

58
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current increase, there may be partial discharges with audible crackling sounds and

stable corona discharges at voltages above the SSV and up to the BDV.

It has been more than a century of incremental understanding into the physics

of flashover phenomena since the paper by Peek [95] on the flashover of different

types of insulators for overhead high-voltage transmission lines in 1912. Breakdown

phenomena are of widespread practical interest in high-voltage switchgear, where they

are considered to be the technical bottleneck in the development of advanced power

transmission and distribution equipment. In this field, breakdown is considered an

unwanted destructive process and much of the research is on how to prevent it, or at

least how to design devices that better withstand breakdown.

In general the precise relation between a setup’s SSV and BDV is not known, ex-

cept in a few simple cases of parallel-plates [10] and coaxial cylinders [22] where they

coincide. In [20] Section 7.3.3, Raizer argues that for the DC case an overvoltage of

10% will trigger breakdown. It is a common engineering practice to evaluate the BDV

resorting to the Townsend criterion, e.g. [83], which only requires the specification of

the ionization coeffi cient, the cathode emission coeffi cient and evaluating path inte-

grals in the electrostatic field distribution. However this criterion actually gives what

we have called the SSV of the discharge. Though in some cases this criterion can be

extended as was done in Chap. 3, it isn’t generally applicable, namely when diffusion,

or photoemission are important. Furthermore, in cases with a more complicated geom-

etry, setting it up can be quite laborious and unjustified since there is a more general

method for calculating the SSV, called the resonance method, of which the theoretical

and numerical aspects have been detailed in Chap. 2.

Though there are plenty of numerical studies on the effect of dielectric surfaces

at breakdown voltages (BDVs) [28, 46, 96], there seem to be no published measure-

ments of the effect of dielectric surfaces on self-sustainment voltages (SSVs). It is of

considerable interest to be able to estimate the minimum voltage that causes break-

down for any given setup. In a general setup that may contain a dielectric and may

have a complex configuration, the standard way to check whether breakdown occurs

at high pressures, would be to employ a fluid model of the gaseous medium which

includes a kinetic scheme, and then perform time-dependent simulations starting from

initial low particle density distributions at a given DC voltage, to see if the discharge

evolves to breakdown, or to extinction. Through a somewhat time-consuming trial

and error procedure, the voltage range containing the BDV can be narrowed down.

In this chapter a more effi cient way to calculate the BDV is proposed for setups with

weakly non-uniform fields. Specifically, in this work and referring to Fig. 4.1 below,

a simplified setup to model a vacuum interrupter of industrial interest is used, where

breakdown is observed along the insulator’s outer surface.
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When a setup, like the one that is studied containing a dielectric surface, is being

tested for the first time with regard to its breakdown voltage, it is natural to assume

no surface-charges are present on the dielectric surface prior to the test. Naturally the

initial number density of charged particles will also be low. In this case the outcome of

the test will be called the first-breakdown voltage. On performing the same test with

the setup stressed beforehand, possibly through previous breakdowns, if no specific

action is taken to remove accumulated surface-charges on the dielectric, then it is

natural to assume that surface-charges are present on the dielectric surface prior to

the test. In this latter case the outcome of the test will be called the repetitive-

breakdown voltage. It is clear that in these two cases, different breakdown voltages

are expected. In this chapter boundary conditions are proposed for the resonance

method to estimate voltages for first and repetitive-breakdowns. A numerical study

is performed on the dependence of the SSV and BDV on the proximity of a dielectric

surface to the active discharge path.

The outline of this chapter is as follows. In Sec. 4.2 the simulated setup’s geometry,

the used boundary conditions and the initial conditions are detailed. For the SSV cal-

culations, we resort to the resonance method of Chap. 2, and for BDV non-stationary

simulations solve the same model, but with time-dependent terms. Time-dependent

simulations of the formation of the self-sustaining steady-state discharge are performed

in Sec. 4.3. In 4.4, boundary conditions (BCs) are tentatively proposed for the reso-

nance method to estimate voltages for first and repetitive-breakdowns. In Sec. 4.5.1

initial conditions (ICs) for time-dependent modelling of first-breakdown and repetitive-

breakdowns are given, results for the first-BDV and the repetitive-BDV, computed by

the resonance method and by the time-dependent simulations, are compared and dis-

cussed. Having established that the SSV calculated by the resonance method is close

to the BDV, Sec. 4.5.2 goes on to characterize in more detail the SSV and how it

varies in the selected setup when various characteristic parameters are changed. Some

aspects of breakdown that are not captured by a characterization just in terms of the

BDV value, are mentioned in passing in Sec. 4.5.3. In Sec. 4.6 a brief conclusion is

made.

4.2 The modelled setup

The device of industrial interest in Fig. 4.1a is a medium voltage vacuum interrupter

and calculations are performed in a simplified setup for modelling breakdown that

occurs over the housing of this type of interrupters. The calculation domain is axially-

symmetric as shown in Fig. 4.1b and comprises two disc-shaped electrodes separated by

a cylindrical dielectric surrounded by dry air at atmospheric pressure. The electrodes
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a) b)

Figure 4.1: (a) Industrial low and medium-voltage vacuum interrupter. Taken from
Siemens AG catalog. (b) Schematic representation of the axially-symmetric calculation
domain, which corresponds to a discharge between two disk electrodes separated by a
cylindrical dielectric of radius R. Calculations are done for different R. Shown is the
case R = 5 mm.

have a radius of 7.5 mm and a thickness of 2 mm. The height of the dielectric in

the selected setup is 4 mm, unless stated otherwise. The radius, R, of the dielectric

is varied in the range from 3 mm to 8.2 mm. The angular aperture into the air at

the triple junctions, i.e. the electrode-dielectric-air contacts, was in all cases 90 ◦. A

curvature of 0.2 mm was applied on the edges of the dielectric and electrodes. The

domain’s numerical boundary for the case of the dielectric height of 4 mm, is at the

radius of 20 mm and at a distance 10 mm below and above the dielectric’s center.

The model and boundary conditions have been introduced in Chap. 2, but for

clarity the boundary conditions for the normal fluxes of charged particles into the

dielectric surface, are here written out in full

(Jα)n =
nα
2
C̄α, for all species α, except electrons.

(Je)n =
ne
2
C̄e − γ (J+)n , for electrons. (4.1)

here (J+)n is the flux of positive ions into the dielectric and γ is the secondary electron

emission (SEE) coeffi cient of dielectric due to A+ impact, C̄α =
√

8kTα/ (mαπ) is the

thermal velocity of species α. In Sec. 4.4 below, two specific BCs are put forward for

the floating potential on the dielectric when doing stationary calculations.

The initial conditions (ICs) for the time-dependent modelling are considered ‘no
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discharge’conditions, where (i) the densities for the species is low, (ii) the electric field

Laplacian and (iii) photoionization terms vanish. Unless stated otherwise, results of

the time-dependent simulations start from uniform initial number densities of 1010 m−3

for the positive ions and one fourth of this value for all remaining species, this order

of magnitude is warranted on the basis of ambient radiation [97].

In all calculations the effective SEE coeffi cient is assumed to characterize all mech-

anisms of SEE (due to ion, photon, and excited species bombardment) [20]. This

coeffi cient is set to 3 %, on both dielectric and cathode surfaces, except when studying

the effect of SEE from the dielectric surface, where it will be varied from 0 % to 100 %.

4.3 Deposition of charge on dielectric surfaces

Reviews that have been written, e.g. [24, 40], recognize the importance of the accu-

mulation of surface-charges, specially in DC powered setups. Surface-charges have the

effect of changing the electric field over dielectrics, this was seen to have an effect on

the setups’operation. The effect has been studied by pre-treating the dielectric sur-

face, depositing charges of a certain polarity onto the dielectric surface and applying

different polarities to one of the electrodes. In [98, 99] various surface-charge measure-

ments were made on different spacers for gas insulated lines. A dielectric spacer was

proposed with zero normal component of the electric field on its surface so that the

charging process would be minimal [99]. In [100] and [24] it is recognized that surface

charging can actually be used to increase the breakdown voltage, it is reported that the

shape of the spacer between electrodes can be used to induce a certain surface-charge

distribution that reduces the electric field from highly stressed parts of the device,

resulting in a higher breakdown voltage. Surface-charges on dielectric surfaces how-

ever are known to have a long decay time, between 30 and 200 hours are mentioned

in experiments done by Fujinami [99]. It is well known that at the triple junctions

the electric field can spike. In an initial stage prior to breakdown, micro and partial

discharges, where streamers don’t fully bridge the gap, are believed to be the major

source of charges for the surface charging process and these streamers originate from

highly stressed parts. Partial streamers can take place where the electric field strength

exceeds the critical value for gas ionization.

In the present modelling, in order to study the evolution from a ’no-discharge’state

towards the self-sustained steady-state, the setup is connected in series to an external

circuit with a ballast of Rext = 295MΩ in series with a voltage source of Uext = 9.74 kV.

In the numerical simulations, Kirchhoff’s second law for the circuit is solved with

respect to the voltage applied at the anode. The time-dependent simulations start

from ICs of no surface-charge on the dielectric.
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Figure 4.2: Time evolution from the ‘no discharge’state to the steady-state. Solid line:
Itot the total current evaluated at the cathode; dashed line: U the discharge voltage;
dotted horizontal line: Uext the voltage source of external circuit; dotted horizontal
lines: (1 µA;U0(σs = 0)) is (current;voltage) in external circuit; dotted horizontal
lines:(10 µA;U0(jn = 0)) is (current;voltage) in external circuit; circles: time-instants
of Figs. 4.3b—4.3h. Considered case is R = 7.5 mm and εD = 1.

In Fig. 4.2 the time evolution of the potential U and the total current at the

cathode Itot, are shown. The dash-dotted horizontal lines in Fig. 4.2 correspond to

SSVs calculated by the resonance method; SSV(σs = 0) is obtained with the BC of

local zero surface-charge on the dielectric, while horizontal line SSV(jn = 0) is obtained

using the BC of zero local current density on the dielectric surface. The values for Rext
and Uext were chosen so that the load line of the external circuit would intersect the

current-voltage characteristics of self-sustaining discharges for BCs σs = 0 and jn = 0,

at the currents of 1µA and 10µA respectively.

In Fig. 4.2, one can see that the total current is constant until about ∼ 0.1 ms

when it steeply increases several orders of magnitude. At about ∼ 0.2 ms, oscillations

are seen that cease at about ∼ 0.7 ms, after which the current monotonically increases

again but at a slower rate. After approximately 8 ms, Itot finally becomes constant.

The physical interpretation is clear. For t . 0.1 ms, the discharge current is low, the

voltage drop over the ballast in the power supply circuit is low and the discharge

voltage coincides with the voltage generated by the power supply, which is shown by

the dotted horizontal line in Fig. 4.2. The discharge current becomes appreciable and

the discharge voltage starts decreasing at approximately 0.1 ms. The discharge current
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increase follows upon successive electron avalanches, each separated by the ion drift

time of about 10µs, as seen in Figs. 4.3a—4.3e. At 0.2 ms, when the total current starts

showing some oscillations, a fully developed volume discharge is formed as confirmed

by Fig. 4.3f. The horizontal dash-dotted line SSV(σs = 0) gives a reasonable idea of

the discharge voltage in the range of fractions of ms when the amount of surface-charge

on the dielectric is small. It was verified that starting from an IC of nA+ = 109 m−3,

apart from the expected higher initial currents due to the higher initial densities, the

time evolution was very similar to that of Fig. 4.2.

The buildup of surface-charge starts taking effect for times somewhat below 1 ms.

At t ≈ 8 ms the buildup of surface-charge is completed and the discharge on the whole

attains a steady-state.

It is therefore established that there are two time-scales: one for the volume dis-

charge formation, which is of the order of fractions of millisecond, and one for the

surface-charge deposition, which is of the order of a few milliseconds in these condi-

tions.

The positive ion density distribution for eight time-instants, associated with the

above-described time-evolution towards the steady-state, are given in Figs. 4.3a—4.3h.

In Fig. 4.3a the clearly distinguishable higher positive ion density front is a result

of the initial uniform density of electrons having previously drifted to the anode and

having ionized neutrals mainly in the high field region close to the anode triple junction.

The resulting well-defined high density front is at 1µs seen propagating towards the

cathode under drift. This same front has a peculiar stretched out form at 11.2µs as it

reaches the cathode, see Fig. 4.3b. Its form is a result of the setup’s electrostatic field

lines. Those ions travelling along the innermost field lines have higher drift velocity

than those in the outermost field lines, particularly when close to the electrodes. The

gradual decrease of velocities for field lines in the radial outward direction, combined

with the longer distances travelled by ions on the outermost field lines, yields the

elongated form of the positive ion density front at 11.2µs. Results not given here,

show that the production of positive ions is maximum close to the anode where the

field magnitude, and therefore ionization, are high. Subsequently the continuously

produced ions, drift along the field lines in the direction of the cathode, giving rise to

the trail behind the density front seen in Fig. 4.3a. The initial high density areas close

to the anode in Figs. 4.3b—4.3d, created through ionization by successive avalanches of

secondary electrons emitted from the cathode, are seen in the next time-instant, Figs.

4.3c—4.3e, to arrive at the cathode. The reason why it is only the first positive ion

density front that has a well defined and elongated front, is because the drift of the

initial uniform electron density towards the anode, created this well defined positive

ion density front over the anode surface through ionization. At 226µs, see Fig. 4.3f,
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a) b) c) d)

e) f) g) h)

Figure 4.3: Time-evolution from the ‘no discharge’state to the steady-state. Positive
ion density distribution for eight time-instants marked as circles in Fig. 4.2. Color
legend of an image is at the far rhs. Details of each picture are in their headers.
A,D and C are respectively the anode, dielectric and cathode. Considered case is
R = 7.5 mm, εD = 1 and IC nA+ = 109 m−3.
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after tens of successive avalanches have buildup the charge density along the discharge

path, the formation of the volume discharge is complete. The two subsequent instants

of 3.6 ms and 7.47 ms in Figs. 4.3g—4.3h illustrate two time-instants of the density

distribution evolution as surface-charge is deposited on the dielectric surface. The last

time-instant corresponds to the steady-state discharge and no more surface-charge is

deposited.

4.4 Resonance method in the presence of dielectrics

It has been noted that for first-breakdown no surface-charge is expected to be on

the dielectric and that for repetitive-breakdowns there is surface-charge on the dielec-

tric. Furthermore, results from the previous section suggest that the SSV(σs = 0)

is connected with the zero surface-charge quasi-stationary discharge state, while the

SSV(jn = 0) is connected with the steady-state discharge which has a non-zero surface-

charge density. These observations are now systematized into tentative BCs on the

dielectric for the resonance method to estimate the voltages of first-breakdown and

repetitive-breakdowns.

To estimate the voltage of the first-breakdown it is natural to assume as BC, that

the surface-charge density is zero at each point of the dielectric

ε0 (εDED − εGEG) · n = σs = 0 (4.2)

here, and below, subscripts D and G refer, respectively, to the dielectric and the

gas; n is the normal vector pointing from gas to dielectric surface; ε0 is the vacuum

permittivity; ε is the relative permittivity; E is the electric field; σs the surface-

charge density. This BC on the dielectric corresponds to a non-prestressed setup, the

associated SSV will be compared with the first-BDV. It implies that the electric field

has to be known inside the dielectric and therefore the Laplace equation has to be

solved in the dielectric. Note that results for the SSV will depend on the dielectric

permittivity.

To estimate the voltage of repetitive-breakdowns it is assumed that the presence of

surface-charge on the dielectric prevents any further buildup of charge, in other words,

the BC assumes that the net current density at each point of the dielectric surface

is zero as given by Eq. (2.9) of Chap. 2. This BC on the dielectric corresponds to a

prestressed setup, the associated SSV will be compared with the repetitive-BDV. To

satisfy this BC only the particle fluxes and the electric field on the gas side need to

be known, i.e. in this case the Laplace equation doesn’t need to be solved inside the

dielectric and therefore results won’t depend on the dielectric permittivity.
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Both BCs σs = 0 and jn = 0 imply the existence of a certain floating potential

at all points of the dielectric surface able to satisfy these conditions, i.e. they are

electrostatic BCs locally constraining the potential for a stationary problem. As was

shown in Fig. 4.2, BCs σs = 0 and jn = 0 are associated with self-sustained states that

are realized, at different time-scales, during the time-evolution from the ‘no discharge’

condition to the steady-state using an external circuit. It should be noted that the self-

sustained state with BC σs = 0 is associated with an initial discharge stage and can be

considered a quasi-stationary state for time-scales much smaller than the characteristic

charge accumulation time. Discharges with BC σs = 0 are quasi-stationary states

in the sense that there is no strict conservation of the current entering and exiting

the electrodes. This is because a small amount of charge is being deposited on the

dielectric.

4.5 Results

4.5.1 Comparing self-sustainment and breakdown voltages

In this section, results for first and repetitive BDVs obtained by the resonance method

in the presence of dielectrics, will be validated. Validation will be performed against

time-dependent simulations of the same model as used for the resonance method.

When using time-dependent simulations for the study of breakdown, a new vari-

able is introduced, namely the surface-charge density on the dielectric, governed by

the partial differential equation for charge accumulation (2.7). The new surface-charge

variable, required the introduction of BC (2.8) given in Chap. 2, and its initial condi-

tion has to be specified on the dielectric when performing time-dependent simulations.

To simulate the development towards a first-breakdown, i.e., of a non-prestressed

setup, it is clear that the IC must be that of a zero surface-charge density on the

dielectric. While for the simulation towards repetitive-breakdowns, i.e., of a prestressed

setup, the IC must prescribe a non-zero surface-charge density distribution on the

dielectric. The initial surface-charge for the latter case is taken to be the surface-

charge distribution obtained from the self-sustained discharge with BC jn = 0.

Hereafter σs = 0 will refer to a non-prestressed setup and jn = 0 to a prestressed

setup, with corresponding conditions. Meaning that the conditions are BC when

σs = 0 and jn = 0 refer to the resonance method, and IC when they refer to time-

dependent modelling method.

A comparison is made between the SSV obtained by the resonance method and

the BDV obtained by the time-dependent simulations of the discharge. The SSV was

computed by means of the procedure laid out in Sec. 2.4.1 (excluding the fourth and



4. Calculation of self-sustainment voltages in the presence of a dielectric
surface 68

R
(mm)

εD
Self-sustainment

σs = 0
First-breakdown

σs = 0
Self-sustainment

jn = 0
Repetitive-breakdowns

jn = 0

3
1

9.9 kV 10.0 kV 9.9 kV 10.0 kV
12

7.5
1 9.4 kV 9.5 kV

6.8 kV 6.9 kV (+2%)
12 11.9 kV 12.0 kV

8.2
1 14.0 kV 14.2 kV

11.5 kV 11.6 kV
12 8.3 kV 8.7 kV (+5%)

Table 4.1: Calculated values for the SSV and the BDV. R is the dielectric radius;
εD the dielectric constant; σs = 0 for non-prestressed setups; jn = 0 for prestressed
setups. When time-dependent simulations need an overvoltage of more than 1% above
the SSV, the percentage is indicated between brackets.

fifth steps) and in Sec. 2.4.2. In Tab. 4.1, SSVs and BDVs of the studied setup are

obtained for cases where the dielectric was recessed (R = 3 mm), aligned (R = 7.5 mm)

and protruding (R = 8.2 mm) relative to the electrodes. Results in Tab. 4.1 are for dry

air at 1 atm, with dielectrics of 4 mm height and either a dielectric constant of εD = 1

or εD = 12. For the resonance method a given low current of 1 pA was used. Columns

further distinguish whether the setup is pre-stressed (:jn = 0) or not (:σs = 0), i.e.,

respectively, whether there is an initial surface-charge density on the dielectric or not.

The first two columns of Tab. 4.1 identify, respectively, the three dielectric radii of

3 mm, 7.5 mm, and 8.2 mm, and the two values of the dielectric relative permittivity,

1 and 12, that were used. The next two columns correspond, respectively, to the SSV

as calculated by the resonance method and to the BDV as calculated by the non-

stationary method, both when σs = 0. The next to last column corresponds to the

SSV as calculated by the resonance method and the last column shows the BDV as

calculated by the time-dependent simulation, both when jn = 0. At the SSV, the time-

dependent simulation leads to discharge extinction. If the discharge extinguishes, the

applied voltage is increased in 1% of the SSV. This successive 1% increase is repeated

until the time-dependent simulation produced breakdown. The last applied voltage is

tabulated as the BDV. It is observed from Tab. 4.1 that the SSV is close to the BDV.

For the retracted dielectric radius of 3 mm and σs = 0, the SSV and BDV are not

affected by the permittivity of the dielectric. This is understandable, as the discharge

channel will be in the gap volume between the inner edge of the electrodes and therefore

away from the dielectric surface, like in Fig. 4.1.

For the aligned dielectric with εD = 1, Figs. 4.4 show two sequences in time of

the positive ion densities during the development, starting from the ‘no-discharge’

state and IC σs = 0. The top row, 4.4a, is a sequence obtained during first-breakdown

calculations at a given voltage 1% above the SSV. The bottom row, 4.4b, is a sequence
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obtained during the development at a given current of 100 nA, but where no charge

was allowed to accumulate on the dielectric.

For the sequence towards breakdown in row a), similarly to Figs. 4.3a—4.3b, the

first two time-instants refer to the first positive ion front leaving the anode just be-

fore 1µs and subsequently arriving at the cathode at 11µs. At this instant, the

secondary electrons emitted from the cathode due to impact of the positive ion front,

originate an electron avalanche responsible for the high positive ion density seen at

the anode. At around 200µs, there is a well formed volume discharge, but at this

timescale no surface-charge has accumulated on the dielectric. In the last image of

Fig. 4.4a, at around 600µs, while there is still not much accumulated surface-charge,

first-breakdown occurs. This breakdown follows upon a gradual increase in the space-

charge in the region in front of the cathode to a degree that it significantly distorts the

background electric field. As a result a streamer-like ionization wave develops in this

region and starts propagating toward the cathode. For the sequence in row b), the

first three time-instants are similar to the sequence of row a). From 200µs onwards,

the density grows until becoming constant at around 84 ms. From the comparison

of the two developments in Figs. 4.4, it is concluded that during the development of

first-breakdown, a density distribution is attained very similar to the self-sustaining

state with BC σs = 0.

In both sequences of Fig. 4.4, i.e., of first-breakdown and of the formation of a self-

sustained state, the physical process towards the development of the volume discharge

at 218µs, is the same and has already been described in Sec. 4.3. It is just because

there is no current limitation during the evolution in Fig. 4.4a, that it evolves to

breakdown. This observation strengthens the association of non-stationary modelling

of first-breakdown, i.e. IC σs = 0, with the stationary resonance method with BC

σs = 0.

Figs. 4.5 show a sequence similar to Fig. 4.4, for the same aligned dielectric, with

the same permittivity and the same initial ‘no-discharge’state, but now starting from

IC jn = 0. The top row, 4.5a, is a sequence obtained during repetitive-breakdown

calculations at a given voltage 2% above the SSV. The bottom row, 4.5b, is a sequence

of the evolution towards the steady-state discharge at a given current of 100 nA.

For the repetitive-breakdown sequence in row a) of Fig. 4.5, a fully developed

discharge appears at around 200µs ‘embracing’ the dielectric surface. In the last

image of Fig. 4.5a, at around 828µs, the current grows several orders of magnitude

and repetitive-breakdown occurs. Similarly to first-breakdown, also for repetitive-

breakdown a near-cathode, streamer-like, ionization wave develops and starts prop-

agating toward the cathode. For the sequence in row b) of Fig. 4.5, the first three

time-instants are similar to the sequence of row a). From 200µs onwards, the den-
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a)

b)

Figure 4.4: Positive ion density evolution towards breakdown and towards the self-
sustained discharge for σs = 0. Row a): 4 time-instants in the first-breakdown de-
velopment, U = 101% × SSV . Row b): 4 time-instants in steady-state development,
I = 100 nA. A,D and C are respectively the anode, dielectric and cathode. Considered
case is R = 7.5 mm, εD = 1 and IC nA+ = 109 m−3. Color legend of a picture is the
first on its rhs.
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a)

b)

Figure 4.5: Positive ion density evolution towards breakdown and towards the steady-
state discharge for jn = 0. Row a): 4 time-instants in the repetitive-breakdown
development, U = 102%×SSV . Row b): 4 time-instants in steady-state development,
I = 100 nA. A,D and C are respectively the anode, dielectric and cathode. Considered
case is R = 7.5 mm, εD = 1 and IC nA+ = 109 m−3. Color legend of a picture is the
first on its rhs.

sity grows until becoming constant at around 63 ms. From the comparison of the two

developments in Figs. 4.5, it is concluded that during the development of repetitive-

breakdown, a density distribution is attained very similar to the self-sustaining state

with BC jn = 0.

In both sequences of Fig. 4.5, i.e. of repetitive-breakdown and of the steady-state

formation, the physical process towards the development of the volume discharge at

218µs, is similar to that described in Sec. 4.3. It is just because there is no current limi-

tation during the evolution in Fig. 4.5a, that it evolves to breakdown. This observation

strengthens the association of time-dependent simulations of repetitive-breakdown, i.e.

IC jn = 0, with the stationary resonance method with BC jn = 0.
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Note that the densities of the last time-instant in row b) of Fig. 4.4 agree with the

corresponding densities of the self-sustained state obtained by the resonance method

shown in Fig. 4.7a. Likewise, the densities of the last time-instant in row b) of Fig.

4.5 agree with the corresponding densities of the self-sustained state obtained by the

resonance method shown in Fig. 4.7c. The fact that during both the first and repet-

itive breakdown sequences, a volume discharge attains that is very similar to the

corresponding self-sustained discharge, makes it physically understandable why corre-

sponding BDVs and the SSVs are so close in Tab. 4.1.

Like for R = 7.5 mm, also for the protruding dielectric radius of 8.2 mm, agree-

ment between the BDV and SSV for both σs = 0 and jn = 0, match similarities in

the development sequences under given voltage and given current. The noticeable

difference when comparing R = 8.2 mm with 7.5 mm, is that for σs = 0 the voltages

decrease with increasing permittivity. This is related with a geometric feature and the

electrostatic field line distribution for the two permittivities, as will be seen in more

detail in the next section.

4.5.2 Characterization of the self-sustained discharge

From the foregoing it can be claimed that the SSVs in setups with weakly non-uniform

fields, give some insight into the study of first-breakdown and repetitive-breakdown in

low overvoltages, namely into to the BDV and the 2D distributions that are realized.

In this section some geometric aspects of the setup are varied and their effect on the

self-sustaining discharge analyzed.

For Fig. 4.6 calculations were performed for 17 dielectric radii R in the range from

3 to 8.2 mm. The figure shows, for various dielectric radii, self-sustaining discharge

voltages for both the initial discharge stage (σs = 0), and for the steady-state discharge

(jn = 0). The solid line is the SSV associated with jn = 0. The dashed line corresponds

to the initial discharge stage with a dielectric constant of 1 and the dashed-dotted line

with a dielectric constant of 12. Also shown is a dotted line that represents the

length (L) of the field line that maximizes the path-integral of the effective ionization

coeffi cient as given in Sec. 3.3 of Chap. 3, i.e. the ionization integral for the steady-

state. The curve for L represents the geometrical effect of the dielectric on the electric

field line distribution, since longer field lines connecting the electrodes, imply higher

SSVs.

For R . 5 mm, when the dielectric is away from the edges of the electrode disks,

the SSV is virtually constant and equals approximately 10 kV, irrespective of the BC

on the dielectric. This value is in good agreement with the experimental BDV for

R = 3.5 mm reported in [25], which is represented in Fig. 4.6 by a filled diamond.
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Figure 4.6: Self-sustainment voltages as a function of dielectric radius R, for the two
studied BCs. Lines calculated with the resonance method; solid: jn = 0; dashed:
εD = 1 and σs = 0; dashed-dotted: εD = 12 and σs = 0. Dotted line: electric field
line length L, from the steady-state discharge, that maximizes the ionization integral.
Filled diamond: experimental BDV from [25].
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Note that the calculated value is lower than the corresponding value taken from the

Paschen curve (approximately 11 kV), which is consistent with the discharge being

not plane-parallel but having a weak field non-uniformity. As R increases, i.e., as

the dielectric approaches the active zone of the discharge, the SSV behaves differently

depending on the BC on the dielectric. For σs = 0 the SSV also depends on the

dielectric permittivity.

For σs = 0 and the smaller permittivity of εD = 1, the SSV is a non-monotonous

function of R, being practically constant for retracted dielectrics, having a slight min-

imum for the aligned dielectric and increasing sharply as the dielectric starts to pro-

trude. This decrease in the SSV for the aligned dielectric, stems from an increase of

the ionization rate along the field line that maximizes the ionization integral, a field

line that passes in regions where the electric field is greatly enhanced owing to the

proximity of the triple junctions. As the dielectric starts to protrude, the SSV starts

increasing since the field line that maximizes the ionization integral starts further away

from the high electric field region.

For σs = 0 and the higher permittivity of εD = 12, the SSV is a non-monotonous

function of R. It is practically constant for deeply retracted dielectrics, increasing

monotonically until it reaches a maximum at R = 7.7 mm (protruding dielectric),

after which it sharply decreases. The reason for this decrease lies in the electrostatics

and will be clarified below.

For jn = 0, the SSV is a non-monotonous function of R, with a qualitatively similar

behavior as for the smaller permittivity of εD = 1, except it has a more pronounced

minimum and the SSVs are lower. A similar analysis as for case εD = 1 can be

given, with the note that the overall lower SSVs are mainly due to having shorter field

lines connecting the electrodes. For jn = 0, surface-charge is screening the gas from

the effect of the dielectric and therefore the SSV does not depend on the dielectric

permittivity. The field line that maximizes the ionization integral, runs roughly along

the center of the active discharge path for the retracted dielectrics, and shifts towards

the inner edge of the active discharge path as the dielectric becomes aligned and starts

protruding. This is why in Fig. 4.6 the SSV dependence on R is similar to that of L.

Our results for jn = 0 agree qualitatively with the behavior of the BDV reported in

the experiment of Fig. 10 in [27] under AC voltage (60 Hz), with a dielectric disk spacer

tightly stacked between disk electrodes. A comparison of the SSV with the BDV in

these conditions is well justified since all characteristic plasma frequencies are much

higher than 60 Hz and the discharge can be considered to be in a quasi-stationary state

at each voltage value. Further, the experimental BDV should be compared with the

SSV for jn = 0 as it is clearly a repetitive-breakdown case, where charge of previous

breakdowns is still on the dielectric. In this experimental setup, similar to ours, the
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presence of the dielectric lowers the BDV when compared to having no dielectric at

all for nitrogen at pressures higher than 1 atm. In experiments by Timatkov [101] and

by Lazaridis [102] with pulsed voltage in a point-to-plane geometry, the effect of a

dielectric in the gap was studied with regard to the measured BDV. Though in the

latter case the electric field non-uniformity may be significantly higher than in the here

studied geometry, their experimental results are in line with our results that indicate

a lower breakdown voltage when a pre-stressed dielectric is close to the discharge area.

Figs. 4.7a—4.7c show 2D distributions for the positive ions in the three self-sustaining

states of Fig. 4.6 for R = 7.5 mm, namely in a) for σs = 0 and εD = 1, in b) for σs = 0

and εD = 12, and in c) for jn = 0. In Figs. 4.7d—4.7f the corresponding 2D distri-

butions for the production rates of the positive ions are given. The calculated SSV

U0, is shown at the top of each of the figures Fig. 4.7. The distribution of positive

ions clearly identifies the curved conduction channel produced in the discharge which

can be understood as a consequence of the charged particles following the electric field

lines. Net production of positive ions occurs mainly close to the anode, see Figs. 4.7d—

4.7f, and it is their drift in the electric field towards the cathode that renders a high

density along the discharge channel.

Figs. 4.8a—4.8f will serve to better understand the form of the discharges for R =

7.5 mm and 8.2 mm. In particular, the figures better explain why the dielectric doesn’t

affect the SSV for jn = 0 and why for R > 7.7 mm, σs = 0 and εD = 12, the SSV

suddenly decreases as was observed in Fig. 4.6. These figures show, in the vicinity

of the cathode triple junction, the normalized electric field Ẽ, i.e. the electric field

corresponding to a normalized potential φ̃ = φ/U0, where U0 is the SSV. Results are

shown for R = 7.5 mm and 8.2 mm , for σs = 0 and jn = 0 and for εD = 1 and 12.

When εD = 1 the field lines undergo no deviation when passing from the dielectric to

the air as seen in Figs. 4.8a and 4.8d. In Figs. 4.8b and 4.8e for εD = 12, the electric

field lines undergo a significant deviation when passing from the dielectric to the air.

For this higher permittivity, the continuity of the normal component of the electric

displacement field across the dielectric surface accounts for the deviation of the field

lines on crossing from air to dielectric, associated with a twelvefold reduction of the

normal component of the electric field. One of the consequences is that the field lines

exiting the dielectric into the air tend to deviate towards the surface normal, making

the field lines more arced and therefore those connecting the electrodes are longer, as

inferred from comparing Figs. 4.7a and 4.7b. This explains why for σs = 0 the SSV

for εD = 1 is overall lower than for εD = 12, excluding the abnormal behavior for

εD = 12 and R > 7.7 mm that will now be addressed.

As we know from Chap. 3, the field line that maximizes the ionization integral

is a good gauge to locate the active discharge path in a setup. There is an abrupt
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a) b) c)

d) e) f)

Figure 4.7: Density of positive ions in a)—c) and production rate of positive ions in
d)—f), for self-sustaining discharges with a current of 100 nA. a) and d): εD = 1 and
σs = 0. b) and e): εD = 12 and σs = 0. c) and f): jn = 0. A,D and C are respectively
the anode, dielectric and cathode. Considered case is R = 7.5 mm. Note that color
legend is linear for a)—c), and is in orders of magnitude for d)—e).
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a) b) c)

d) e) f)

Figure 4.8: Normalized electric field strength and field lines close to the cathode triple
junction. Row a) —c): R = 7.5 mm. Row d) —f): R = 8.2 mm. Column a), d): εD = 1
and σs = 0. Column b), e): εD = 12 and σs = 0. Column c), f): jn = 0. The color
legend for the rows is at the rhs.
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decrease observed in the self-sustainment voltage for σs = 0 and εD = 12 (dashed-

dotted in Fig. 4.6) and dielectric radii above 7.7 mm. In results not shown here, this

reduction happens because the discharge path that maximizes the ionization integral,

ceases to be associated with a field line connecting cathode to anode through the air.

Instead, for R > 7.7 mm, the field lines that maximize the ionization integral, start at

the cathode, close to the triple junction, and travel a short distance in the air before

entering the dielectric, see Fig. 4.8e. The short field line length and associated high

field strength, explain the decrease in self-sustainment voltages for these cases.

The application of BC jn = 0, results in very small normal components for the

electric field on the dielectric surface. As a consequence there will be an electric field

line on the gas side that closely follows the dielectric surface contour, this is apparent

in Figs. 4.8c and 4.8f. Since discharge paths follow electric field lines, it is clear why

for jn = 0 the SSV is strongly correlated with geometry and therefore the variation of

the length of the field lines connecting the electrodes, dotted line in Fig. 4.6, explain

the variation obtained for the SSVs, solid line in Fig. 4.6. Note that in Fig. 4.6 the

shortest field line that maximizes the ionization integral occurs for R = 7.3 mm, while

the lowest SSV occurs for R = 7.5 mm. This small discrepancy is due to the ionization

integral being based on an approximation that uses an effective ionization coeffi cient

and just the electric field distribution, lacking in particular information about the

particle densities.

In order to understand to what extent the value of the effective secondary electron

emission coeffi cient (γD) of the dielectric surface affects the present results, γD was

varied from 0 to 100%. This variation was seen to affect the densities of charged

particles at the dielectric surface, mainly that of electrons. The density of electrons

at the dielectric surface could change as much as 50%, however this difference faded

away after just a few micrometers into the gas; it had no impact on the discharge

channel and therefore no significant impact on the SSV. It was seen to affect the SSV

by less than 0.1% for the case R = 8.2 mm with jn = 0, where the variation of γD was

expected to have the largest effect.

Just for the case of dielectric radius 7.5 mm, the SSV is shown in Tab. 4.2 for

dielectric heights of 2 mm, 4 mm and 6 mm. As expected, the obtained SSVs follow

the general understanding in terms of higher values for longer field lines connecting

the electrodes.

There seem to be no quantitative experimental data published on the effect of di-

electric surfaces on SSVs. It is known from experiment that the presence of a dielectric

facilitates the breakdown (e.g., review [103]), and it is indeed seen in the solid line of

Fig. 4.6 that the SSV decreases as the radius of the dielectric approaches that of the

electrodes. It would be very interesting to check experimentally the rapid increase of
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Gap εD SSV (σs = 0) SSV (jn = 0)

2 mm
1 6.1 kV

5.0 kV
12 7.1 kV

4 mm
1 9.4 kV

6.8 kV
12 11.9 kV

6 mm
1 11.8 kV

7.9 kV
12 15.7 kV

Table 4.2: Self-sustainment voltages as a function of dielectric height (Gap) and di-
electric constant (εD). Results for σs = 0 and jn = 0. Considered case is R = 7.5 mm.

the SSV and/or repetitive-BDV when the dielectric is protruding, predicted by the

modelling and seen in Fig. 4.6 in the range R ≥ 7.5 mm.

4.5.3 Characterization of breakdown for low overvoltages.

Differently from many other simulations, e.g. [46, 96], where a particle density seed

is used to facilitate breakdown, in the present simulations, we have considered as ICs

the ‘no discharge’condition and jn = 0. These are the conditions of this section to

further investigate repetitive-breakdown in the setup with dielectric radius 7.5 mm.

The current oscillograms for this case and for permittivities εD = 1 and εD = 12 are

given in Fig. 4.9. The applied DC voltage is 6.9 kV, i.e. a low overvoltage, 2% above the

setup’s SSV. What is seen in these oscillograms is that the current decreases in a first

stage of the discharge (0 < t . 30µs). This decrease of the current is due to the fact

that the electrons are being depleted from the gap mainly due to (i) their conversion

into the less mobile O−2 ions in three-body attachment reactions and due to (ii) their

drift motion to the anode. These mechanisms cause a decrease in the electron density,

with a consequent decrease in the current. Another contributing factor to the initially

decreasing current is that the applied voltage is close to the SSV; this current decrease

is not seen for significantly higher overvoltages. The initial front of positive ions, after

the ion drift time (∼ 15µs), has traversed the gap, see Fig. 4.5, and gives rise to the

first electron avalanche. This avalanche is initiated by the seed electrons ejected from

the cathode by secondary electron emission due to the impact of the positive ions.

Through a positive feedback loop, these electrons ionize neutrals close to the anode,

increasing there the density of positive ions. The peaks in current provoked by the

avalanches are however hardly visible in the current oscillograms of Fig. 4.9 due to

the logarithmic scale. The successive avalanches raise the overall charge density in the

gap and consequently, at about 200µs, the current goes up.

Breakdown happens at around 0.5 ms and is a consequence of the buildup of space-

charge in the gas volume not far from the cathode. This space-charge grows and
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Figure 4.9: Current-time oscillograms for a discharge development towards breakdown.
Solid line: εD = 1; dotted line: εD = 12. Considered case is R = 7.5 mm and jn = 0.

contracts in space, with its maximum moving towards the cathode. When densities

reach about 1019 m−3, the background electric field of the electrode setup becomes

significantly distorted and as a result an ionization wave develops in this region that

starts propagating to the cathode. In fractions of a millisecond the current grows more

than 6 orders of magnitude, fulfilling our definition of breakdown.

The current oscillograms of Fig. 4.9 do show that over time, setups with differ-

ent dielectric permittivities will exhibit different characteristics. For instance, it takes

more than 2 times longer for breakdown to occur for the higher permittivity as com-

pared to the smaller permittivity. Differences are expected between the two setups,

since the evolution from an initial condition of ‘no-discharge’, which is quite different

from the densities in the self-sustained state of each setup, will affect differently the

dynamics of the different charge-distributions on the dielectric.

For a general comparison between the case of low overvoltages with one of high

overvoltages, Figs. 4.10 show distributions of the reduced electric field at instants just

prior to breakdown for R = 3 mm. Fig. 4.10a is for a 1% overvoltage, and Fig. 4.10b

for 30% overvoltage. In Fig. 4.10a, close to the cathode, a severe distortion of the

background field is seen, where a very short low field region trails behind a high field

front. In Fig. 4.10b, a similar situation is found, however there is now also an elongated

low electric field region in the upper half of the gap trailing behind a high field front

in the middle of the gap. The space-charge is high in regions where the electric field is

high, due to the high production rates there, and is also high in the neighboring low

field (high conductivity) channels where charges drift to. In results not shown here,
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a) b)

Figure 4.10: Reduced electric field at a time-instant close to breakdown. a) 1% over-
voltage; b) 30% overvoltage. Further details are at the header of each figure. A and
C are respectively the anode and cathode. Considered case is R = 3 mm.

the high electric field fronts are fronts of cathode-directed ionization waves. In Fig.

4.10b the mid gap ionization wave originated at the anode and is therefore also called

a positive streamer.

In Fig. 4.10a we have again the situation encountered for low overvoltages in R =

7.5 mm, see last instants of Fig. 4.4a and last instant of Fig. 4.5a, where a near-

cathode ionization wave has formed close to the cathode and is propagating towards

the cathode. It should be stressed that at this low overvoltage, there is no streamer

propagating across the totality of the gap. In Fig. 4.10b, for an overvoltage of 30%, a

positive streamer has traversed about half the gap length, when densities in the region

in front of the cathode grew to a point where a near-cathode ionization wave formed

and is now also propagating towards the cathode. As shown in the header of Figs.

4.10, breakdown happens in about 0.5 ms for the SSV, much longer than for the higher

overvoltage, where it takes about 1µs. Also, the average power consumption at the

instants in Figs. 4.10, was about 1 W for the low overvoltage, and 34 W for the high

overvoltage.
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4.6 Conclusion

A simplified setup for modelling a device of industrial interest, made up of a dielectric

disk tightly stacked between two disk electrodes, was selected as a case study. The

resonance method, developed in Chap. 2, was used to calculate the first-breakdown

voltage and repetitive-breakdown voltage in this setup. The calculated voltages were

compared with those obtained from time-dependent modelling of breakdown. The

mutual agreement was to within 5% and therefore validates the use of the resonance

method to setups with a weakly non-uniform distribution of the electric field. This

is a finding of some importance, since unlike time-dependent modelling, where the

breakdown voltage has to be obtained by a very computationally intensive and time-

consuming trial and error procedure, the resonance method, based on stationary mod-

elling, provides a systematic procedure to calculate the self-sustainment voltage. It

is unclear exactly how much time would be needed to calculate the breakdown volt-

age to within 1% exclusively using non-stationary calculations, i.e. without using the

self-sustainment voltage provided by the resonance method. In the considered setup

and without efforts of optimization, typical computation time of one self-sustainment

voltage was about 2 h, while typical computation time for a certain breakdown voltage,

was about 48 h.

It was recognized that during the temporal evolution towards breakdown, a density

distribution is attained that very much resembles that of the corresponding quasi-

stationary state with no surface-charge on the dielectric. The time-scale of formation

of this quasi-stationary volume discharge, is much shorter than the time-scale for

the formation of the steady-state, where all the surface-charge has accumulated on

the dielectric. This analysis led to the formulation of two boundary conditions for the

resonance method. The first boundary condition of a non-prestressed setup, prescribed

no surface-charge on the dielectric, and produced a quasi-stationary state that was

associated with a first-breakdown discharge. The second boundary condition of a

prestressed setup, prescribed zero current density on the dielectric, and produced a

steady-state that was associated with a repetitive-breakdown discharge.

Results for the first-breakdown voltage and the repetitive-breakdown voltage were

obtained for various radii of the dielectric disk and for two dielectric permittivities.

It was found that with the non-prestressed condition, the self-sustainment voltage is

generally higher than with the prestressed condition. A notable exception occurs when

the dielectric constant is 12 and the dielectric protrudes the electrodes, where an abrupt

voltage decrease with R was seen to be connected to the most favorable discharge path

becoming one that connects directly cathode to dielectric surface, instead of anode. For

the radius of 3 mm the obtained result could be compared to the available experiment
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with good agreement. Results for the recessed dielectrics also agreed qualitatively with

experiment. It would be interesting to see if experiments will confirm the calculated

self-sustainment voltages for protruding dielectrics.

From the obtained results, the best configuration to withstand breakdown, both

first and repetitive-breakdown, for the studied setup with dielectric height of 4 mm, is

to use the dielectric with low permittivity and a radius of 8.2 mm. Though for lower

permittivity it was seen that breakdown happens faster than for higher permittivity.

It was verified that the dynamics of breakdown in low overvoltages was similar

in all cases, though this was not the main focus of this work. During a first break-

down development, a volume discharge formed similar to the self-sustaining discharge

without surface-charge on the dielectric surface. During a repetitive breakdown de-

velopment, a volume discharge formed similar to the self-sustaining discharge with

surface-charge on the dielectric. In the last stage of both types of breakdown, no

streamer was seen bridging the gap, instead close to the cathode, electron and positive

ions densities would increase to values of order 1019 m−3 whereupon a streamer-like

ionization wave would move towards the cathode, dramatically raising the conduction

and displacement currents locally across the gap. At significantly higher overvoltages,

positive streamers were seen to propagate from the anode to the cathode.

The axi-symmetric calculations here presented are not expected to be experimen-

tally observed because the presence of 3D perturbations, which are not allowed in

axi-symmetric calculation domains, would break the axial symmetry. Nevertheless

we still consider that the present work provides valuable qualitative and quantita-

tive information on the evaluation of self-sustainment and breakdown voltages, since

the main processes of formation and propagation are captured by an axi-symmetric

domain.

In the selected setup the electric field has a weak non-uniformity, i.e. Emax/ 〈E〉 ≤
7.4, where 〈E〉 = SSV/Gap, and it was possible to establish that the self-sustainment

voltage (SSV) and breakdown voltage (BDV) are close. It should be stressed that

for the purpose of calculating the field non-uniformity, Emax was gauged in the whole

domain excluding the triple junctions and their immediate vicinity (10µm), where it

is known to diverge. It is not expected that the agreement between the SSV and BDV

will hold in cases where the field non-uniformity is several orders of magnitude. Future

work could study the degree of field non-uniformity above which the resonance method

significantly deviates from standard time-dependent simulations of breakdown.



Chapter 5

Conclusions and future work

The present work has revisited the mathematical formulation of low-current discharges.

The system of equations governing the ignition of quasi-stationary, high-pressure and

low-current self-sustained gas discharges, includes the conventional system of equa-

tions for the conservation of particles, the Laplace equation for the potential and

partial differential equations for the photoionization terms. At ignition space-charge

and recombination are negligible and there are steady distributions for the calculated

quantities. A careful analysis showed that the system of equations is best understood as

a multidimensional boundary-value eigenvalue problem for a system of stationary par-

tial differential equations. The applied voltage is the eigenparameter that determines

whether charged particles production processes, like ionization by electron or photon

impact, generated in the discharge, are suffi cient to compensate for the loss of charged

particles drifting to the electrodes and walls or disappearing through attachment. Only

in very special cases can this system be solved analytically, for complicated geometries

a numerical solution is the only viable option. For this purpose several methods were

investigated to ascertain which was the fastest and most effi cient to solve this eigen-

value problem, i.e., to obtain the value for the applied voltage (eigenvalue) and the

associated distributions of densities, potential and photoionization (eigenfunctions).

Three different methods were investigated, namely direct solution of the eigenvalue

problem for the self-sustainment voltage, investigation of stability of the no-discharge

solution, and the resonance method. Given that all methods produced the same re-

sults, the latter resonance method was chosen as the method of choice, because it was

the easier to implement.

The self-sustaining discharge obtained by the resonance method can be used as the

starting point in the construction of the current-voltage characteristic (CVC) of any

setup, where points of the CVC for ever increasing values of current are obtained in an

iterative process. It is well known that convergence of a stationary non-linear problem,
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like in the construction of the CVC, is diffi cult, unless a good initial approximation

is used. Therefore the resonance method greatly facilitates the task of obtaining the

CVC. The stationary solution to a given problem can of course also be obtained by

means of temporal relaxation using non-stationary modelling, as was done on several

occasions in Chap. 4. However, since time-dependent modelling is generally much

more time consuming, obtaining the solution through stationary modelling is to be

preferred. The complete procedure for the application of the resonance method has

been summarized in a simple five step flowchart.

The resonance method was seen to be capable of calculating the self-sustained

discharge of a variety of setups, in fact to date, in no setup has it failed to produce

the low-current self-sustained discharge state. The research group of IPFN at UMa

has successfully applied the resonance method to the following geometries: plane-to-

plane, coaxial cylinders, point-to-plane, rod-to-plane, (plane with protrusion)-to-plane,

dielectric disk tightly stacked between disk electrodes and there is no reason why it

should not work for an arbitrary geometry. When the studied physical phenomena

display oscillatory behavior, like in pulsed corona, using a stationary solver allows to

capture time-averaged characteristics of the discharge.

Returning to the starting point of calculating the voltage of a low-current self-

sustained discharge, the Townsend criterion as still a very widely used tool, is revis-

ited. This tool is attractive since it needs only as input parameters the ionization and

attachment coeffi cients and the secondary electron emission coeffi cient, specified as

functions of the reduced electric field. In a complex setup, seasoned engineers would,

with educated guesswork, select the probable field line along which they expect the dis-

charge to happen. They would be able to equate the ionization integral to a tabulated

value at which self-sustainment or breakdown is known to occur and adjust the voltage

value to produce the needed electric field. A rigorous mathematical foundation for this

type of heuristic procedure, is what was sought. Having recognized self-sustainment

phenomena in low-current discharges as being described by an eigenvalue problem, an

attempt to derive the classical Townsend criterion from the corresponding equations

has enabled to obtain a more general expression. The derived expression is applicable

to multidimensional setups with non-uniform electric fields and reduces to the classical

Townsend expression in the case of a plane-to-plane geometry. The general outline for

the derivation, involves neglecting diffusion and parametrizing the conservation equa-

tions of the charged particles along the electric field lines. The effect of diffusion is

assumed insignificant for volume discharges. It is subsequently possible to set up a

closed set of equations involving just electrons and negative ions. For an analytical

solution of these equations, some simplifying assumptions had to be made, namely

photoionization and detachment were neglected. On neglecting photoionization, the
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applicability of the criterion is restricted to electronegative gases in configurations

with weakly non-uniform electric field, however the neglect of detachment may de-

grade the criterion’s results for electronegative gases. The latter shortcoming can be

remedied by using an effective attachment coeffi cient which, in an approximate way,

takes into account the detachment. The validity of the various simplifying assump-

tions were checked by comparison with similarly simplified versions of the resonance

method. Comparisons were done for air in three geometries, namely negative coronas

in concentric-cylinder, in point-to-plane configurations and in an axially symmetric

configuration with weakly nonuniform electric field. In the studied cases it was found

that neglect of diffusion produces an error in the self-sustainment voltage of the order

of 1% and that photoionization was negligible. In all studied geometries and con-

ditions, the most accurate version of the extended criterion, i.e., using the effective

attachment coeffi cient, produced a self-sustainment voltage virtually equal to the one

calculated by the resonance method. The largest deviation was of 2% for the coaxial

cylinder geometry at 0.1 atm.

In brief, to evaluate the self-sustainment voltage of a setup where the electric field

non-uniformity is not too strong and the gas is electronegative, the Townsend crite-

rion is the most economic option requiring just the publicly available (e.g. LoKI [54])

field-dependent coeffi cients for ionization, attachment, electron mobility and electron

temperature. If however the aim is to have a tool capable of calculating the self-

sustainment voltage in a general setup, then the more elaborate option of the resonance

method is to be preferred.

As the next logical step in the research, a unique opportunity presented itself, i.e.,

to investigate the difference between the self-sustainment voltage and the breakdown

voltage in a given setup. Note that experimentally, in certain conditions the two

voltages coincide; e.g. [22] for a setup of coaxial cylinders. For calculating the self-

sustainment voltage, the developed resonance method is well suited, while for the

breakdown voltage the same hydrodynamic framework was used, but complemented

with the non-stationary terms in the particle density conservation equations and a new

boundary condition at the dielectric surface allowing for charge accumulation.

This research focused mainly on a simplified setup of a disk dielectric, tightly

stacked between two disk electrodes, intended to model breakdown observed in a

medium DC-voltage circuit-breaker. In this setup the electric field non-uniformity

was not very high. When powered by a DC-voltage source and a ballast resistor, this

setup was seen to first evolve to a volume discharge at a voltage corresponding to a self—

sustained state without surface-charge on the dielectric. This state was attained within

fractions of a millisecond. After about 10 milliseconds the steady-state discharge was

obtained, with a voltage equal to the self-sustainment voltage of the steady-state. In
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this state, the necessary surface-charge has been deposited on the dielectric to sat-

isfy the steady state’s boundary condition of zero current density across the dielectric

surface. Based on these findings, the following two initial conditions were introduced

for non-stationary simulations of two types of breakdown. First-breakdown implies

an initial condition where there are no surface-charges on the dielectric. Repetitive-

breakdown implies an initial condition where there is a surface-charge distribution on

the dielectric. This latter distribution is taken from the self-sustained steady-state

calculated by the resonance method using as boundary condition zero current density

across the dielectric. Apart from the initial condition for the surface-charge, low ‘no-

discharge’densities were ascribed to all the charged particle densities. In other terms,

the initial conditions distinguish a setup that has been pre-stressed, i.e., has accumu-

lated surface-charge, from a ‘fresh’non-prestressed setup with no surface-charge on

it. Calculations of the breakdown voltages using time-dependent modelling relied on a

previous calculation of the self-sustainment voltage by the resonance method, insofar

as the initially tried breakdown voltage was precisely the self-sustainment voltage.

For the studied setup in each of its initial conditions, time-dependent modelling was

seen to lead to discharge extinction at an applied voltage equal to the self-sustainment

voltage of the setup. The applied voltage was then increased by 1%. Time-dependent

modelling was performed at the new voltage value and it was checked whether break-

down occurred. If the discharge extinguished, the applied voltage would be increased

a further 1% and so successively until the time-dependent modelling evolved to break-

down. Several conclusions were made regarding these calculated voltages. First, the

breakdown voltages calculated using the non-stationary description were seen to be no

more than 2% above the self-sustainment voltage, the one exception being with the

protruding dielectric of higher permittivity that needed an overvoltage of 5%. Sec-

ondly, the first-breakdown voltage, i.e., when starting from the non-prestressed setup,

was systematically higher than the repetitive-breakdown voltage, i.e., when starting

from a pre-stressed setup, except for the protruding dielectric. Thirdly, for repetitive-

breakdown, when the boundary condition of the resonance method is that of zero

current density across the dielectric surface, or equivalently in the non-stationary de-

scription, when the setup is pre-stressed, results confirm that breakdown is facilitated

when there is a dielectric close to the active discharge path. The repetitive-breakdown

voltages don’t depend on the dielectric constant nor on details of the secondary elec-

tron emission from the dielectric. Results for the modelled circuit-breaker indicate

that the setup that best withstands both first and repetitive-breakdown, is one where

the dielectric has low permittivity and protrudes the electrodes.

The dynamics of repetitive-breakdown in the studied setup was observed for low

overvoltages to be qualitatively similar, whether the dielectric surface was close to the
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active discharge area or not. In brief the dynamics unfolds as follows, upon successive

avalanches, the charge density increased along field lines connecting cathode to anode,

but does so at a higher rate in front of the cathode. Eventually the space-charge in

front of the cathode increases to a point where it locally distorts the electric field of

the electrodes. The created conditions give rise to the self-propagating structure of an

ionization wave travelling towards the cathode. This wave originates in the volume

not far from the cathode, and has characteristics similar to a positive streamer. The

time-scale for repetitive-breakdown was of the order of milliseconds and happened

earlier for the dielectric of lower permittivity.

In future work the degree of field non-uniformity above which the resonance method

significantly deviates from standard time-dependent simulations of breakdown could

be studied. A more systematic study is expected of the streamer dynamics in low and

high overvoltages, with and without a dielectric surface along the discharge path. The

study of the effect of other quantities, like the secondary electron emission coeffi cient on

streamer velocity would be of interest. Also, the development and implementation of

photoemission from dielectric surfaces is desirable, especially for simulations where the

streamer propagates close to dielectric surfaces. Further developments of the present

model could be its implementation as a 3D model, which would bring the results closer

to the physically realized situation, but it is however not expected to substantially

affect the presented results, namely the values of the calculated self-sustainment and

breakdown voltages. A proper extension of the working model could be to include the

plasma-surface interaction at the cathode. This would allow to prolong the modelling

when the ionization wave, or streamer, hits the cathode and possibly allow to model

the transition to a spark discharge. It would however require taking into account

the substantial heat flux towards the cathode, estimating the Murphy and Good field

emission, Nottingham effect, heat propagation inside the cathode and more, and is

therefore a challenging task.



Appendix A

Boundary conditions for
drift-diffusion equations

The hydrodynamic (drift-diffusion) equations (2.2) are justified provided that the local

macroscopic length scale L is much larger than the relevant microscopic scale λα.

When α refers to an ion species, λα is represented by the ion mean free path. When

α = e, λe is represented by the electron energy relaxation or maxwellization length.

On distances of the order of λα or smaller from solid surfaces, the hydrodynamic

equations lose their validity. Therefore, a kinetic analysis is indispensable in order

to formulate boundary conditions on solid surfaces for hydrodynamic equations in a

rigorous way: a kinetic equation for the velocity distribution function on distances

of the order of λα must be solved in the first approximation in the small parameter

λα/L and the obtained solution must be asymptotically matched with a solution of

the hydrodynamic equations on the scale L; the procedure of the asymptotic matching

will provide the boundary condition being sought.

Let us denote by the index n the projections of the corresponding vectors onto the

local normal directed from the solid into the plasma. Let us first consider the case

where (i) En, the local normal electric field at the surface, is weak enough so that

its work over the charged particles of species α over the distance λα is much smaller

than the characteristic translational energy of the particles, e |En|λα � kTα; (ii) all

particles of species α coming to the surface from the plasma are absorbed and none

are reflected; and (iii) the surface does not emit the particles of species α. (Here

Tα is the species effective temperature and k is Boltzmann’s constant.) In this case,

the distribution function on distances of the order of λα is of the order of λα/L, i.e.,

asymptotically small, compared to values of the distribution function on distances of

the order L. Therefore, the above-described asymptotic matching procedure requires

that nα the particle number density governed by the hydrodynamic equations vanishes
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at the surface, thus giving the trivial boundary condition nα = 0 for the hydrodynamic

equations. Note that this boundary condition has exactly the same physical meaning

as the standard no-slip boundary condition on solid surfaces for the Navier-Stokes

equations.

If the local electric field is moderate or strong, e |En|λα & kTα, then the asymptotic
structure of the solution on the distances of the order λα is rather complex for both the

electrons [104—106] and the ions [107]; no simple exact solution is possible and therefore

there is no unique way to formulate simple boundary conditions. This explains why the

number of different existing variants of boundary conditions is so large; e.g., [108, 109]

and references therein. On the other hand, the effect of the boundary conditions over

the distribution of particles attracted to the surface (the positive ions in the case

En < 0 and the negative ions and the electrons in the case En > 0) is localized on the

length scale kTα/e |En| in the case of moderate or strong electric fields. This scale is
comparable to, or smaller than, λα and the hydrodynamic (drift-diffusion) equations

are anyway inapplicable on this scale. The effect of the boundary conditions on the

distribution of the repelled particles will be qualitatively correct if the flux of particles

emitted by the surface is described correctly. Hence, the exact form of the boundary

conditions is not very important in the case of moderate or strong electric fields, and

this is consistent with what is found in the modelling practice. Therefore, the use of

simple approximations is advisable.

The simplest variants may be summarized as follows. The hydrodynamic transport

flux of particles of species α in the direction from a solid surface into the plasma may

be represented as

Jαn = rαJα− + J (α)em − Jα−, (A.1)

where Jα− is the density of the flux of the particles coming from the plasma to the

surface, rα is the reflection coeffi cient, and J
(α)
em is the density of the flux of the particles

emitted by the surface. Considering rα and J
(α)
em as known, one needs to express

the kinetic quantity Jα− in terms of hydrodynamic parameters in order to obtain an

explicit boundary condition for hydrodynamic equations.

The simplest approximation is to assume that Jα− is proportional to nα the local

number density and the mean speed of chaotic motion, C̄α =
√

8kTα/πmα: Jα− =

ξαnαC̄α, where ξα is a numerical coeffi cient and mα is the species particle mass. Eq.

(A.1) assumes the form

Jαn = J (α)em − ξα (1− rα)nαC̄α. (A.2)

It is well known that if the velocity distribution of particles of species α is isotropic

and Maxwellian, then the density of particle flux in any direction, in particular, in
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the direction to the surface, equals nαC̄α/4, so ξα in Eq. (A.2) may be set equal to

1/4. The condition obtained in this way is equivalent to the so-called Thomson-Loeb

formula, which has been widely used in fluid modelling of gas discharges; e.g., [75] and

references therein.

If the number of particles moving from the surface is low, then the velocity dis-

tribution near the surface is strongly anisotropic. Approximating this distribution by

a half-Maxwellian function, one obtains ξα = 1/2. Note that the obtained boundary

condition in the case of the electrons and re = 0 coincides with the corresponding

boundary condition employed in Plasma module of COMSOL Multiphysics R©.
Another variant of boundary condition may be obtained by representing the veloc-

ity distribution near the surface as a superposition of two distributions, describing the

particles moving to and from the surface. Assuming that each of these distributions

is half-Maxwellian, one can write

rαJα− + J (α)em =
nα+C̄α

2
, J− =

nα−C̄α
2

, (A.3)

where nα+ and nα− are the number densities of the particles moving into the plasma

and to the surface, respectively. Solving these equations for nα+ and nα− and substi-

tuting into the expression for the net particle number density, nα = nα+ + nα−, one

finds

nα =
(
rαJα− + J (α)em

) 2

C̄α
+ Jα−

2

C̄α
. (A.4)

Solving this equation for Jα− and substituting into Eq. (A.1), one obtains the boundary

condition

Jαn =
2J

(α)
em

1 + rα
− 1− rα

1 + rα

nαC̄α
2

. (A.5)

This condition has been known for a long time, e.g., in the particular case rα = 0

it coincides with Eq. (38) of [110]; see also recent work [109]. The second term on

the rhs of Eq. (A.5) is consistent with the second term on the rhs of Eq. (A.2) if one

sets ξα = 1/2 (1 + rα). However, the first term on the rhs of Eq. (A.5) involves the

coeffi cient 2/ (1 + ra), which is absent in Eq. (A.2) and which exceeds unity except for

ra = 1.

From now on, let us restrict the consideration to the usual situation where the

reflection of the charged particles is insignificant, i.e., rα = 0 for all charged-particle

species. Let us apply each of the above boundary conditions to three limiting cases.

The first one is the case of local equilibrium, where most of the emitted particles return

to the surface: |Jαn| � J
(a)
em . Eq. (A.2) with ξα = 1/4 and Eq. (A.5) give the correct

result nα = 4J
(α)
em /C̄α. Eq. (A.2) with ξα = 1/2 assumes a somewhat different form

nα = 2J
(α)
em /C̄α.



A. Boundary conditions for drift-diffusion equations 92

The second limiting case is the one where most of the emitted particles are swept

away by the electric field into the bulk of the plasma and only a small number return to

the surface. The drift velocity of the particles in the vicinity of the surface is directed

into the plasma and is much greater than C̄α, so the second term on the rhs of Eqs.

(A.2) and (A.5) is small. Eq. (A.2) assumes the form Jαn = J
(α)
em as it should. On the

other hand, Eq. (A.5) gives Jαn = 2J
(a)
em ; a physically unrealistic result.

The third limiting case is the one where the emission flux is much smaller than

the flux of the particles coming from the plasma, i.e., the first term on the rhs of Eqs.

(A.2) and (A.5) is small. Eq. (A.2) with ξα = 1/4 assumes the form Jαn = −nαC̄α/4,
while Eq. (A.2) with ξα = 1/2 and Eq. (A.5) give Jαn = −nαC̄α/2. The former
expression would be adequate for an isotropic velocity distribution function. However,

the distribution near an absorbing non-emitting surface is strongly anisotropic, and

the latter expression appears to be more appropriate in such cases.

Thus, each of the boundary conditions correctly reproduces two of the limiting

cases, but not the third one. Since the boundary condition (A.5) gives an unrealistic

result in the important limiting case where most of the emitted particles are swept

away by the electric field into the plasma, this condition can be hardly recommended.

Eq. (A.2) with ξa equal to 1/4 or 1/2 appears to be more physical.

In many cases the ion emission is neglected, i.e., J (α)em for all ion species may be set

equal to zero. Then Eq. (A.2) assumes the form

Jαn = −ξαnαC̄α, Jen = J (e)em − ξeneC̄e (A.6)

for the ions and the electrons, respectively. The electron emission flux J (e)em must be

evaluated with account of all relevant mechanisms, including the electron emission un-

der the effect of charged and excited particles and photons produced in the discharge

(secondary electron emission), photoemission caused by external radiation, thermionic

emission, thermo-field and field electron emission from the cathode surface. It should

be stressed that in the case of weak electric field, where e |En|λα � kTα or, equiva-

lently, the drift speed is much smaller than C̄α, the first boundary condition in Eq.

(A.6) is equivalent to the trivial boundary condition nα = 0 as it should.

The natural choice is to set ξa = 1/2 in the first equation Eq. (A.6). ξe in the second

equation may also be set equal to 1/2 except at hot surfaces in high-pressure (arc)

plasmas, where the dominating electron emission mechanism is thermionic emission

and a significant part of the emitted electrons return to the surface, hence the value

ξe = 1/4may be more appropriate. The boundary conditions (A.6) with ξa = ξe = 1/2

were used in most of the simulations described in this work.

For computational reasons, it may be convenient to replace the boundary condition

Eq. (A.6) for the positive ions at the cathode and negative ions and the electrons at the
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anode by the condition of zero normal derivative of nα, which amounts to neglecting

the diffusion flux of the attracted particles to the electrode in comparison with the

drift flux. This eliminates diffi culties with the computation of the distribution of the

attracted particles on the length scale kTα/e |En|, where the solution given by the
hydrodynamic equations is non-physical anyway. This simplification was employed in

most of the simulations described in this work.

As mentioned above, the effect of the precise form of boundary conditions in the

modelling is not strong. As an example, one can refer to the parallel-plate discharge,

considered in Sec. III E of [52]: the discharge initiation voltage, computed numerically

using the boundary conditions Eq. (A.6) with ξi = ξe = 1/2, differs from the value

obtained using the boundary conditions Jen = −γJin at the cathode and ni = 0 at

the anode, by mere 1.2%. (The index i here refers to the positive ions.) As another

example, one can mention that the change of the boundary conditions for the negative

ions at the cathode and for the positive ions at the anode from the condition (A.6)

with ξα = 1/2 to nα = 0 produced little effect in the modelling of corona discharges

reported in [94].



Appendix B

Plasmachemical processes and
transport coeffi cients for
modelling of low-current
discharges in high-pressure air

The model of plasmachemical processes and transport coeffi cients of low-current dis-

charges in dry air at pressures of the order of atmospheric and higher, used in this

work, was obtained by modifying, as described in this section, the ‘minimal’model

[62]. Note that the ‘minimal’model was validated in [62] by comparing the computed

inception voltage of corona discharges with several sets of experimental data on pos-

itive and negative glow coronas between concentric cylinders, over a wide range of

pressures and diameters of the cylinders, and on positive coronas in the rod-to-plane

configuration. It should be stressed that modifications described in this section do not

affect the inception voltage, which was the parameter computed in [62]. The modified

model was validated in [94] by comparing the computed steady-state corona parame-

ters with time-averaged measurements in DC corona discharges in point-plane gaps in

ambient air over a wide range of currents of both polarities and various gap lengths.

The modified model takes into account the following charged species: the electrons,

an effective species of positive ions, which will be designated A+ in this work instead

of M+ as in [62], and the negative ions O−2 , O−, and O−3 . The ions generated in air

by the electron impact ionization are N+2 and O
+
2 . Ions O+

2 are generated also by the

photoionization, which is produced by UV radiation emitted by N2 molecules excited

by electron impact. The N+2 ions in air at pressures of about 1 atm and higher are

rapidly converted into O+
2 . One channel of such conversion is the fast charge transfer

94
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reaction N+2 + O2 → O+
2 + N2. Another channel comprises a three-body conversion

process of N+2 and N2 molecules into the N+4 ions, followed by the charge transfer from

N+4 to O2. Therefore, the positive ions in the ionization zone are represented mostly

by O+
2 .

If the reduced electric field E/N is suffi ciently low and the effective ion temperature

is not appreciably higher than the neutral gas temperature T (which is typically of the

order of 300 K), then the O+
2 ions may be converted into complex ions; e.g., [111]. In

the case of humid air, the formation of cluster ions containing several H2O molecules

is also possible.

Consider, as a characteristic example, complex ions O+
4 , which are created mostly

in the reaction O+
2 + 2O2 → O+

4 + O2 and destroyed in the reverse reaction. Using the

rate constants [112], one obtains

z = 1.78× 10−5
nO2
N0

(
TO+4

300 K

)4(
300 K

TO+2

)3.2
exp

5030 K

TO+4

, (B.1)

where z = nO+4
/nO+2

, nα and Tα are the number density and the effective temperature

of species α, and N0 = 2.45 × 1025 m−3 is the standard gas number density (the

number density corresponding to the pressure of 1 atm and the gas temperature of

300 K).

Assuming the value of 2.3×10−4 m2 V−1 s−1 for the reduced mobility (the mobility

scaled to the standard number density) of ions O+
4 in air [111], one obtains the following

estimate from the Wannier formula (C.1): TO+4 = T+0.037(E/N)2 Td−2 K. Assuming

for the reduced mobility of the O+2 ions in air the value of 2.8×10−4 m2 V−1 s−1, which

corresponds to the reduced mobility given in Table IIb (p. 68) of compilation [113] for

the reduced field of 100 Td, one obtains TO+2 = T + 0.054(E/N)2 Td−2 K.

It follows from Eq. (B.1) that, for atmospheric pressure and T = 300 K, z > 1

for E/N . 51 Td and z < 1 for higher reduced fields; in particular, z ≈ 0.0063 for

E/N = 100 Td , which is an approximate value of the critical reduced field in air.

This example confirms that the main positive ion species in the active zone of corona

and corona-like discharges in air are the O+
2 ions, with a typical value of the reduced

mobility of 2.8 × 10−4 m2 V−1 s−1. In the drift zone complex positive ions dominate,

while in the case of humid air, it are cluster ions that dominate (except in the region

adjacent to the active zone where E/N approaches 100 Td). Typical reduced mobilities

of the positive ions are in the range (2.0− 2.5)× 10−4 m2 V−1 s−1 [111].

The dominating process in the active zone is electron multiplication, which is not

directly affected by the presence of positive ions. Hence, values of the mobility of

positive ions in the drift zone are the relevant ones. In this model, the reduced mobility

of an effective positive ion species is set equal to 2.2 ×10−4 m2 V−1 s−1. Similarly, the
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reduced mobility of the ions O−2 is also set equal to 2.2 ×10−4 m2 V−1 s−1, reflecting

the possible formation in the drift zone of complex and, in the case of humid air,

cluster ions [111, 114].

The O− ions are present mostly in the active zone, at high reduced electric fields,

since in the drift zone most of them are destroyed by detachment, charge transfer

to the oxygen molecules, and conversion into ozone ions. According to [113], the

reduced mobility of O− varies between approximately 3.7×10−4 m2 V−1 s−1 and 5.2×
10−4 m2 V−1 s−1 over the reduced field range up to 100 Td (there are no data for higher

fields). According to [115], the reduced mobility of O− varies between approximately

3.3 × 10−4 m2 V−1 s−1 and 4.9 × 10−4 m2 V−1 s−1 over the reduced field range up to

120 Td. In principle, variations of reduced mobilities with the reduced field can be

readily introduced into numerical models. Since, however, a constant value is used for

the mobility of O−2 (and complex/cluster ions), and given that the above variations

are not huge, a constant value of 5.2 cm2 V−1 s−1 is chosen for the reduced mobility of

O− in order to be consistent. Note that this value corresponds to the value given in

Table IIf (p. 81) of [113] for the reduced field of 100 Td.

TheO−3 ions are present mostly in the drift zone, at low reduced fields. According to

[113], the reduced mobility of O−3 varies between approximately 2.7× 10−4 m2 V−1 s−1

and 3.4 × 10−4 m2 V−1 s−1 over the reduced field range up to 100 Td, and between

approximately 3.5× 10−4 m2 V−1 s−1 and 3.3× 10−4 m2 V−1 s−1 over the reduced field

range between 100 Td and 200 Td. According to [115], the reduced mobility of O−3
varies between 2.5× 10−4 m2 V−1 s−1 and 3.1× 10−4 m2 V−1 s−1 over the reduced field

range up to 100 Td, and between 3.1×10−4 m2 V−1 s−1 and 2.9×10−4 m2 V−1 s−1 over

the reduced field range between 100 Td and 240 Td. In order to be consistent, we have

chosen for the reduced mobility of O−3 ions a constant value of 2.7× 10−4 m2 V−1 s−1,

which corresponds to the value shown in figure 2 of [115] for the reduced field of 60 Td.

The diffusion coeffi cients of all ion species are related to the mobilities through Ein-

stein’s relation with the corresponding effective ion temperatures evaluated by means

of the Wannier formula, Eq. (C.1) of Appendix C. We remind that both Einstein’s

relation and the Wannier formula are accurate in the case of ions with a constant

mobility. The mobility of the electrons was taken from [116] and the longitudinal and

transversal diffusion coeffi cients of the electrons were evaluated with the use of the

online version of the Bolsig+ solver [117] and the cross sections [118].

The kinetic scheme and relevant kinetic data used in this model are summarized

in Tab. B.1. Reactions 1-4 and 6-8 are the same that were considered in [62]. In

[62], collisional detachment from O−2 , reaction 5, was written, following [119], in the

form O−2 + M → e + O2 + M, where M is any of the molecules N2 and O2. However,

the contribution of the process O−2 + N2 is small, therefore the collisional detachment
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No. Reaction Evaluation of reaction rate Ref.

1 e + M→ 2e + A+ Same as in [62] [62]

2 e + O2 → O− + O Same as in [62] [62]

3 e + O2 + M→ O−2 + M a) η3
N2 = 1.6× 10−47 (E/N)−1.1 m5 [116]

4 M + hν → e + A+ b) Eqs. (2.4)-(2.6) [61]

5 O−2 + O2 → e + 2O2
c) 6.1× 10−17 exp

[
− 9050
T+0.305(E/N)2

]
m3

s see text

6 O− + N2 → e + N2O
c) 1.16× 10−18 exp

[
− 882
T+0.436(E/N)2

]
m3

s [119]

7 O− + O2 → O + O−2
c) 6.9× 10−17 exp

[
− 16200
T+0.436(E/N)2

]
m3

s [119]

8 O− + O2 + M→ O−3 + M c) 1.3× 10−42 exp
[
−T+0.436(E/N)2

1860

]
m6

s [119]

9 A+ + B−→ products d) Eq. (B.2)

10 A+ + e→ products d) Eq. (B.3)

Table B.1: Kinetic scheme and relevant kinetic data. a)Townsend coeffi cient.
b) reaction rate. c)reaction rate constant. T in K, E/N in Td. d)recombination
coeffi cient. A+: the effective positive ion species. B−: any of the negative ions O−,
O−2 , O−3 . M: any of the molecules N2 and O2.

from O−2 is written in this model with account of collisions only with O2. The approx-

imations of rate constants of reactions 5-8 were taken from Table 2 of [119]. (The rate

constant of the collisional detachment from O−2 was multiplied by the factor of 5, in

agreement with the above.) It should be stressed that these approximations are valid

for variable gas temperature T , in contrast to the approximations given in Appendix

of [119] and used in [62], which are valid only for T = 300 K.

Note that, although numerical results reported in this work refer to the constant

gas temperature T = 300 K, the applicability of the modified model for variable T

is an improvement that will be exploited in subsequent work. It is expected that

the modified model is applicable under conditions where the degree of dissociation of

oxygen molecules is suffi ciently low and oxygen atoms do not significantly affect the

balance of charged particles (in particular, the rate of destruction of negative ions). At

air pressures of the order of 1 atm, this corresponds to gas temperatures of the order

of 1000 K and lower.

Another modification to the kinetic scheme [62] is an account of recombination.

Again, this modification is not very relevant to the results reported in this work,

however it will be useful for subsequent work. It should be stressed that due to
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the lack of suffi cient experimental information, the account of recombination cannot

be introduced in an accurate way and should be considered rather as an order-of-

magnitude estimate. The main mechanism of ion-ion recombination in air, reaction

9, at pressures of the order of 1 bar and higher is the ion-ion recombination with

participation of neutral molecule(s), with the recombination coeffi cient in the range

(2− 2.5)× 10−12 m3 s−1 [120]. The rate constant of the binary ion-ion recombination

is typically of the order of 10−13 m3 s−1 (e.g., [112, 121]) and the contribution of this

mechanism is small. At pressures of the order of 1 atm and higher, the coeffi cient of

ion-ion recombination with participation of neutral molecule(s) may be estimated by

means of the expression [122]

β−1ii = (βi3N)−1 + β−1iL , (B.2)

where βi3 is the three-body recombination rate constant and βiL is the Langevin re-

combination coeffi cient. This expression has to be separately evaluated for each pair

of positive (A+) and negative (O−, O−2 , O−3 ) ions. The Langevin recombination co-

effi cient is related to the mobilities of the recombining positive and negative ions, µα
and µβ, by the formula ε0βiL = e

(
µα + µβ

)
. The value of the three-body recombina-

tion rate constant for T = 300 K and low reduced electric field is assumed equal to

1.5 × 10−37 m6 s−1 for all three negative ion species; this value ensures a reasonably

good agreement of the recombination coeffi cients for O−2 and O−3 , given by Eq. (B.2),

with the experimental data shown in figures 6 and 7 of [120] on the recombination

coeffi cient in air for a wide range of pressures. The temperature dependence of the

three-body recombination rate constant varies from T−5/2 (or T−3 for ions in parent

gases [123]) at low pressures to T−3/2 at pressures of around 1 atm [120]. Thus, one

can set βi3 = 1.5 × 10−37 (300 K/Tαβ)3/2 m6 s−1, where Tαβ is the effective reduced

temperature of species α and β defined in Appendix C.

Electron-ion recombination, reaction 10, can occur via dissociative recombination

of molecular ions, the recombination with participation of neutral molecules, and three-

body recombination with the third body being the electron. The most effective dis-

sociative electron-ion recombination process in air is the dissociative recombination of

molecular ions O+
2 and O+

4 . The rate constants of recombination of these ions are βe2 =

2 × 10−13 (300 K/Te)
0.7 m3 s−1 [124] and βe4 = 4 × 10−12 (300 K/Te)

0.5 m3 s−1 [125],

respectively (here Te is the electron temperature, which in this work was evaluated in

terms of the electron mean energy with the use of the online version of the Bolsig+

solver [117] and the cross sections [118]). The total rate of electron-ion recombination,

accounting for contributions of both these ion species, is βe2nenO+2 + βe4nenO+4
and

is represented in the considered model as βeinenA+ , where nA+ has the meaning of

the sum nO+2
+nO+4

and βei may be termed the electron-ion recombination coeffi cient.
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One finds

βei =
1

1 + z
βe2 +

z

1 + z
βe4, (B.3)

where z is given by Eq. (B.1). Note that the second term on the rhs of Eq. (B.3), which

describes the contribution of O+
4 to the total recombination rate, can be appreciable

even in cases where z is much lower than unity, since the recombination rate constant

for this ion is much higher than that for O+
2 . (Note that the latter is a typical situation:

rate constants of dissociative recombination for complex and cluster ions are by an

order of magnitude higher than for diatomic ions.)

The coeffi cient of electron-ion recombination with participation of neutral mole-

cules may be estimated by means of a formula similar to Eq. (B.2). The Langevin

electron-ion recombination coeffi cient may be estimated in terms of the mobility µe
of electrons, βeL = (e/ε0)µe. Since the electron mobility is high (by two orders of

magnitude higher than the ion mobility), the Langevin electron-ion recombination is

negligible up to the gas pressures of about 100 atm. The three-body electron-ion re-

combination with the third body being a gas molecule has been studied in several

gases, including CO2 and H2O. There are no data available on the three-body re-

combination of oxygen ions with electrons. In the experiment [126] on recombination

of N+4 in nitrogen at Te = T , the three-body process has not been observed up to

the gas pressure of about 2 atm. It is also known (for CO2) that the recombination

coeffi cient for the three-body process decreases with increase of Te much faster than

that of the two-body process [127]. On the basis of this information, one can expect

that the role of three-body electron-ion recombination with the third body being a gas

molecule would not be very appreciable for air pressures up to several tens of atm,

although this point requires future study. Thus, the electron-ion recombination with

participation of neutral molecules will be neglected.

The rate constant of the three-body electron-ion recombination with a third body

being the electron may be estimated as 1.4× 10−31 (Te/300 K)−4.5 m6 s−1 [128]. This

process comes into play at high electron densities, typically those exceeding 1024 m−3,

and may be accounted for by adding the corresponding term to the expression (B.3)

if appropriate.



Appendix C

Effective reduced temperature of
a pair of ion species in high
electric fields

Let us consider the effective temperature Tα of an ion species α, which is defined by

the equation 1
2mα(vα − vdα)2 = 3

2kTα and characterizes the mean kinetic energy of

the chaotic motion of the ions. Here vα, mα, and vdα are the particle velocity, particle

mass, and average (drift) velocity of species α. This temperature may be evaluated

by means of the Wannier formula in the form

3

2
kTα =

3

2
kT +

1

2
Mv2dα, (C.1)

e.g., Eq. (6-2-13b) on p. 276 of [129]. Here M is the particle mass of the neutral gas.

In the case of air,M is interpreted as a weighted average of N2 and O2 particle masses.

It is natural to use the effective temperature Tα while evaluating Einstein’s relation

for the species α.

Let us consider the effective reduced temperature Tαβ of species α and β, which

characterizes the mean kinetic energy of relative motion of particles of species α

and β and is defined by the equation 1
2mαβ(vα − vβ)2 = 3

2kTαβ, where mαβ =

mαmβ/ (mα +mβ) is the reduced mass of the species. It can be shown that

3

2
kTαβ =

3

2
k
mαTβ +mβTα
mα +mβ

+
1

2
mαβ (vdα − vdβ)2 . (C.2)

Note that the third factor in the first term on the rhs of Eq. (C.2) is the so-called

reduced temperature of the species α and β, so the physical meaning of this equation

is clear.

Note also that Eq. (C.2) is consistent with the well-known fact that the mean

kinetic energy of relative motion of ions and neutrals is characterized by the effective
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ion temperature: setting in (C.2) vdβ = 0, mβ = M , Tβ = T , one obtains Tαβ = Tα as

it should be.

Strictly speaking, the use of the effective reduced temperature Tαβ for the evalua-

tion of rate constants is justified in the case of binary ion-ion reactions. However, in

the absence of better options it is natural to use these temperatures also in the case

of three-body reactions, where the third body is a neutral particle, in the same way

as the effective ion temperature is used for evaluation of rate constants of three-body

ion-molecular reactions with the third body being a neutral particle. Note that in

the particular case of ion-ion recombination reactions, the factor (vdα − vdβ)2 in (C.2)

may be replaced by (vdα + vdβ)2.



Appendix D

Validation of the Local-Field and
Quasi-Stationary
Approximations

The fundamental mechanisms of gas discharges – ionization, drift, diffusion, recombi-

nation, and relaxations – have considerably different length and time-scales, and the

conditions of the modelled setup will dictate what approximations are justified. In the

hydrodynamic (drift-diffusion) description two main assumptions, or approximations,

are made. The first is that the characteristic time for momentum transfer in collisions

is assumed much shorter than the propagation time of any macroscopic characteristic.

In particular, in a setup with a streamer, this would mean that the streamer head

is at the same point during this characteristic time. The second assumption is that

the characteristic distance of momentum transfer in collisions is much shorter than

the space-variation of any macroscopic characteristic. This is also stated as inertia

having a smaller influence than collision and for a setup with a streamer it means that

the streamer properties are roughly the same over this characteristic distance. An

analysis of the range of validity of the drift-diffusion approximation can be found in

[130], where the assumption of negligible fluid inertia, as compared to the influence of

collisions, is questioned for fields above 2000 Td.

The drift-diffusion equations comprise transport and kinetic coeffi cients that de-

pend on the electric field. Here the validity of two approximations for these coeffi cients

are studied. The Local-Field Approximation (LFA) related to length-scale variations

and the Quasi-Stationary Approximation (QSA) related to time-scale variations. Val-

idating the LFA will justify using the local electric field to calculate the transport and

reaction rate coeffi cients. Validating the QSA will justify using the electric field at the

considered time-instant to calculate the transport and reaction rate coeffi cients.
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D.1 The Local-Field Approximation

The central issue is whether the space variation of the electric field is over length

scales suffi ciently large for the electron to collisionally relax fast enough to adjust the

electron energy distribution function (EEDF) to the local value of the electric field. If

it is, then the LFA is justified.

Collisional uniformization in air at standard temperature and pressure is related

to the mean free path, for an electron in a weakly ionized plasma it is

λe =
1

nhQ̄
(1,1)
eh

(D.1)

where Q̄(1,1)eh is the energy-averaged cross section for momentum transfer in electron-

neutral collisions, plotted below in Fig. D.1, and nh the number density of neutral

particles. Each particle has its conservation and continuity equations and the length

scale above which these equations are valid varies for each particle.

With the intention to obtain an expression for the length scale needed for electrons

to relax to their equilibrium mean energy, the local energy balance written under the

local-field quasi-stationary approximation is

jeE = neνehδ
3

2
k (Te − Th) (D.2)

where ne is the electron density, je = enevd is the electron current density with vd =

µeE = eE/ (meνeh) relating drift speed (vd) to mobility (µe) or νeh which is the

number of electron-neutral collisions per second, δ is the fraction of electron energy

lost per collision. In (D.2) the lhs is the electron energy gain per volume and time,

due to the presence of an electric field, and the rhs is the electron energy loss per

volume and time due to electron-neutral collisions. The fraction δ can be written as

δ = 2δume/mh, where δu is the inelastic collision factor, i.e., a measure of how much

the electron-neutral collisions deviate from being elastic collisions.

As expected, Fig. D.2a shows that the inelastic collision factor is two to four orders

of magnitude larger than the elastic collision factor. The same figure also shows that

the energy transferred to the electron per collision varies from less than 1% at 30 Td

to 20% at 2000 Td typical of streamer propagation, meaning that at the higher fields

fewer collisions are needed for the electron to relax to the mean energy.

The electron-neutral collision frequency can be written as νeh = nhC̄eQ̄
(1,1)
eh , where

C̄e =
√

8kTe/πme is the electron speed of chaotic motion, or, using (D.1), is written

as

νeh =
C̄e
λe
. (D.3)
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Using the foregoing relations, it follows from Eq. (D.2) that

E =

√
12

π

k
√
Te (Te − Th)

eλu
, (D.4)

where

λu = λe/
√
δ. (D.5)

The drift time of an electron over λu, namely tu = λu/vd = λu/ (µeE), can be

rewritten using (D.4), (D.5) and (D.3) to get

tu =
1

νehδ

√
16Te

3π (Te − Th)
. (D.6)

The number of collisions suffered by an electron during this time is tuνeh and the

corresponding energy lost by an electron during this time is

tuνehδ
3

2
k (Te − Th) =

3

2
kTe

√
16

3π︸ ︷︷ ︸
1.3

√
Te − Th
Te

(D.7)

Given that the last two square-root multipliers on the rhs of (D.7) are of order unity,

one can conclude that the energy lost by an electron during its drift over λu is compa-

rable to its translational energy and therefore λu has the meaning of a length scale of

the electron energy relaxation (spatial relaxation of the EEDF occurs on this length

scale).

In Fig. D.2b it can be seen that the electron energy relaxation length scale λu
does not exceed approximately 10µm for all reduced fields of interest E/nh ≥ 1 Td.

For reduced fields of the order of 40 Td and higher, λu does not exceed approximately

1.5µm. The reduced electric fields in active zones of gas discharges (e.g., in ionization

regions of corona discharges or streamer heads of streamer discharges) are substantially

higher than 40 Td and the local-field approximation is valid, unless the local scale of

spatial variation of the electric field is of order of 1µm or smaller, which is usually

not the case. The reduced field outside active zones (e.g., in drift regions of corona

discharges) may be smaller, however since there the local scale of spatial variation

typically exceeds 10µm, the LFA remains therefore valid.

Let L be a characteristic scale of variation of E. For L � λu, E does not vary

significantly over the electron energy relaxation length and the exchange of energy

is fast enough to adjust the EEDF to the local value of E. This is the condition of

validity of the LFA. Both λe and λu are plotted in Fig. D.2b as functions of the reduced

electric field.

The condition that needs to be satisfied for the LFA to be valid is [131],

λu

∣∣∣∣E ·∇EE2

∣∣∣∣� 1 (D.8)
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Figure D.1: a), solid: Qeffeh effective energy dependent collision cross-section between
electron and artificial air (Phelps database, www.lxcat.net, retrieved on April 23,
2024). a), dashed: Q̄(1,1)eh averaged electron collision cross-section as a function of
the electron mean energy (from Bolsig+ solver). b), solid: Te electron temperature as
a function of the reduced electric field. b), dashed: Q̄(1,1)eh averaged electron collision
cross-section as a function of the reduced electric field.

where coeffi cient |E ·∇E| /E2 is a measure of the spatial variation of the electric field
in the numerical modelling at a particular point and time.

D.2 The Quasi-Stationary Approximation

The central issue is now whether the time variation of the electric field happens over

time-scales large enough for the electron to collisionally relax fast enough to adjust

the EEDF to the instantaneous value of the electric field. If it is, then the QSA is

justified.

Let us introduce the electron mean free flight time τ e = ν−1eh and designate τu =

τ e/δ, which will be seen to be the time-scale of the electron energy relaxation. Equation

(D.6) may be rewritten as

tu = τu
4

π

√
Te

Te − Th
. (D.9)

Thus, τu is close to tu the time of drift of an electron over λu. Energy lost by an

electron during τu is given by an expression similar to Eq. (D.7):

τuνehδ
3

2
k (Te − Th) =

3

2
kTe

√
π

3

Te − Th
Te

. (D.10)

Given that the last two multipliers on the rhs are of order unity, one can conclude that

the energy lost by an electron during time τu is comparable to its translational energy
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Figure D.2: a), solid: δ/(2me/M) inelastic collision factor. a), dashed: δ fraction of
energy transferred per collision. b), solid: τu electron energy relaxation time. b),
dashed: λe electron mean free path. b), dotted: λu electron energy relaxation length.
Quantities are plotted as functions of the reduced electric field.

and therefore τu has the meaning of a time-scale of the electron energy relaxation

(time relaxation of the EEDF occurs on this time-scale).

Let t be a characteristic time of variation of E. For t � τu, E does not vary

significantly during the electron energy relaxation time and the exchange of energy is

fast enough to adjust the EEDF to the instantaneous value of E. This is the condition

of validity of the QSA. The value for τu is plotted in Fig. D.2b as a function of the

reduced electric field.

As can be seen in Fig. D.2b, the electron energy relaxation time τu does not

exceed approximately 1 ns for all reduced fields E/nh ≥ 1 Td and is well below 0.1 ns

for reduced fields of the order of 40 Td and higher. Hence, the QSA is justified for

the vast majority of discharges in atmospheric-pressure air. Examples of exceptions

are sub-nanosecond discharges and the post-discharge stage, where this approximation

may fail.

The condition that needs to be satisfied for the QSA to be valid is [131],

τu

∣∣∣∣dE/dtE

∣∣∣∣� 1 (D.11)

where coeffi cient |dE/dt| /E is a measure of the time variation of the electric field in

the numerical modelling at a particular point and time.
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D.3 Validation in Simulations

In [132] condition (D.11) was studied in artificial air at 1 atm for different rates of

change of the electric field. The electron Boltzmann equation was solved with and

without an explicit term for the time-variation of the distribution function. Results

show significant deviations between the exact and quasi-stationary EEDFs when the

electric field rise-times from 0 to 50 Td were 1 ns or shorter. The deviations started

right at the beginning of the electric field variation, resulting in significant deviations

for the predominant low-energy electrons, i.e. below 2 eV. Deviations only became

negligible at the end of the field rise-time. The authors show similar results for the

electron mean energy and the electron power transfer, with the notable difference that

the deviations are negligible already one order of magnitude before the terminus of

the rise-time of 1 ns and two orders of magnitude earlier for a rise-time of 1µs. The

mentioned deviations raise the question whether streamers can be properly described

by the QSA, since at their heads time variations are in the nanosecond range. The

significant deviation of the EEDF at electron energies below 2 eV is related to the

low fraction of electron energy transfer (δ) at low fields, see Fig. D.2a. This deviation

however isn’t critical in streamer modelling since at low energies very few electrons are

present and therefore this deviation doesn’t affect the gain and loss processes as much

as at higher energies. This is the reason why the details of the EEDF at low energies are

not that important, since energy-dependent quantities, like reaction rate constants, are

very low at low energies. Furthermore, from [132] it can be seen that the mentioned

rapid convergence in time of the exact and quasi-stationary results for the electron

mean energy and power transfer, for rise-times of 1 ns and 1µs, means that it is only

during the initial instances, when the field increases to about 10% of its final value,

that these quantities aren’t suitably calculated in the quasi-stationary approximation,

being this the time during which electrons have lower energy. If a higher electric field

offset is used, there will also be a larger electron energy fraction transferred in collisions

(δ), which favors a more rapid equilibrium of electron mean energy. In [133] electric

field rise and fall times of 20 ns between 100 and 300 Td were studied in pure Nitrogen

at a pressure of 1 torr and 300 K. In this work an approximate approach is used, based

on the theory of perturbations using the parameter of the inequality in (D.11), which is

presumed to be small. A comparison was made of this approximate approach with the

exact and the quasi-stationary approach. For the calculated ionization rate constants,

the quasi-stationary approach systematically over-estimated the values in rise-times

and sub-estimated them in fall-times to about a factor of 2 to 3 relative to the exact

value. This was to be expected, since at low pressures the QSA doesn’t allow electrons

to locally relax to a well defined energy value due to the reduced number of electron-
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Figure D.3: Positive streamer over dielectric surface. a): E/nh reduced electric field
distribution. a), black line: contour for E/nh = 1000 Td. a), white line: segment
along which quantities in b) are calculated. b): Quantities plotted along the white
line of a). b), dashed: reduced electric field. b), solid: τu |dE/dt| /E of (D.11). b),
dotted: λu |E ·∇E| /E2 of (D.8).

neutral collisions. For a more direct test as to whether a drift-diffusion description with

the LFA-QSA is suitable for describing streamer dynamics at atmospheric pressure,

Naidis in [134] took into account nonlocal effects in the calculation of rate constants

following [133]. It was shown that the LFA-QSA can be used with practical accuracy

to calculate the main characteristics of a streamer. It is known that the LFA-QSA is

particularly bad at low pressure, for electrons emitted off electrodes and dielectrics by

ion bombardment, and for describing electron transport in the sheath [135, 136], but

at the pressure of 1 atm, used in the present work, the above mentioned constraints

aren’t expected to be important. For the purpose of verifying these assertions we check

whether, in our calculations, the electric field’s spatial and temporal variations are so

high that the collision rates are unable to impart to the electrons their mean energy.

This verification is done for the usual setup, see Fig. 4.1, subject to a high overvoltage

and at an instant where there is already a positive streamer propagating in the gap

close to a dielectric surface as seen in Fig. D.3a. The LFA and QSA conditions of

(D.8) and (D.11) are checked for the white line at the streamer’s head, shown in Fig.

D.3a, along which gradients in space and time are expected to be more pronounced.

Results of this verification are shown in Fig. D.3b. In Fig. D.4a and D.4b the validity

of respectively the LFA and QSA is also checked in a larger region.
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a) b)

Figure D.4: Positive sreamer over dielectric surface. a), b), black line: contour for
E/nh = 1000 Td. a): λu |E ·∇E| /E2 of (D.8). b): τu |dE/dt| /E of (D.11).

Results from Fig. D.3b show that in a narrow region about 1.5µm wide, where

the electric field decays approximately from 500 to 50 Td, the LFA isn’t strictly valid,

likewise the QSA isn’t strictly valid in a narrow region about 0.5µm wide where the

electric field decays approximately from 200 to 50 Td. What mitigates these cautionary

notes on the validity of LFA and QSA is the very small spatial extent over which they

occur and the fact that they happen outside the bulk of the streamer where the main

physical processes that affect the discharge, dominate. It was also verified that the

high values of the electric field didn’t lead to critical anisotropy of the EEDF, since

the drift velocity was no larger than 30% of the thermal velocity.

One can conclude that the local-field quasi-stationary approximation is justified

for the vast majority of discharges in atmospheric-pressure air, although analysis of

space and time-scales of variation of the electric field may be needed in some cases.
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