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Abstract

These are technical notes written during implementation of the method described
in [1]. The notes have been written for internal use and not were not intended to
be read by other people, however some colleagues who have read them found them
useful.

1 The Richardson-Schottky formula

j (T, F, φ) = AemT
2 exp

(
−φ−∆A

kT

)
(1)

where T is the surface temperature, F is the electric field at the surface of the emitter, φ
is the work function, Schottky correction to the work function is

∆A =

√
e3F

4πε0

=

√
(1.60217733× 10−19 C)3

4π8.854187817× 10−12 F m−1
V m−1

1

eV

√
F

V m−1
eV (2)

= 3. 794 687 303× 10−5

√
F

V m−1
eV, (3)

and

Aem =
4πmek

2e

h3
=

4π9.1093897× 10−31 kg
(
1.3806568× 10−23 J K−1

)2
1.60217733× 10−19 C

(6.6260755× 10−34 J s)3

(4)

= 1. 201 744 270× 106 A m−2 K−2 (5)

2 Field emission

Tunnelling from a cold metal is described by the Fowler-Nordheim formula. The latter
may be viewed as a limiting case of the Murphy-Good formalism; see equation (56) and
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subsequent material in Sec. IV of [2]. Transforming the latter equation from Hartree
units to dimensional ones and then replacing e, F , and j by, respectively, e (4πε0)−1/2,
F (4πε0)1/2, and j (4πε0)−1/2 in order to obtain SI units, one finds

j =
aF 2

φt2
exp

(
−bvφ

3
2

F

)
, (6)

where

a =
e3

8πh
=

(1.60217733× 10−19 C)
3

8π6.6260755× 10−34 J s

(V /m)2

eV A m−2

eV

(V /m)2

A

m2
(7)

= 1. 541 434× 10−6 A eV

V2 (8)

and

b =
8π
√

2me

3he
=

8π
√

2× 9.1093897× 10−31 kg

3× 6.6260755× 10−34 J s×1.60217733× 10−19 C

eV3/2

V m−1

V eV3/2

m
(9)

= 6. 830 888× 109 V

eV3/2 m
(10)

are the first and second Fowler—Nordheim constants and v and t are functions of the
argument y = ∆A/φ.
The validity of equation (6) as a limiting case of the Murphy-Good formalism is limited

by the inequality (57) of [2]). The latter may be written as

φ

∆A
− 1 > q

√
∆A, (11)

where

q =
2hε0

π
√
mee2

=
2× 6.6260755× 10−34 J s 8.854187817× 10−12 F m−1

π
√

9.1093897× 10−31 kg (1.60217733× 10−19 C)2
(eV)1/2 1√

eV
(12)

= 6. 102 035× 10−2 1√
eV

. (13)

For φ = 4.5 eV, inequality (11) is satisfied for ∆A < 4. 010 eV. This value is slightly
below φ, which should have been expected (in the range 0 ≤ ∆A ≤ φ, where the lhs of
the inequality (11) is non-negative, the rhs does not exceed approximately 0.06

√
φ/ eV,

i.e., is rather small). The corresponding limitation for the electric field reads F < 1.
116× 1010 V m−1. As expected, the value on the rhs is somewhat lower than the value of
1. 406× 1010 V m−1, at which ∆A equals φ.
The function t (y) in equation (6) may be estimated by means of equations (5) and

(9) of [3]:

v (y) = 1− y2(1− 1

3
ln y), (14)

t (y) = 1 +
y2

9
(1− ln y). (15)
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3 Murphy-Good formalism

Emission current, equation (19) [2]

j (T, F, φ) = e

∫ ∞
−Wa

N (T,W, φ) D (F,W ) dW, (16)

where W has the meaning of the part of the electron energy for the motion normal to the
surface measured from zero for a free electron outside the metal.
The Fermi-Dirac distribution, equation (1) [2]:

N (T,W, φ) =
4πmekT

h3
ln

[
1 + exp

(
−W + φ

kT

)]
. (17)

The tunnelling probability is set equal to unity, D = 1, for W > Wl, where

Wl = −

√
e3F

8πε0

= −∆A√
2
. (18)

ForW < Wl, the WKB-approximation is used, equation (5) of [2] (cf. Ch. 9 of my lectures
on Quantum Mechanics, file QM09.tex):

D =

{
1 + exp

[
−2i

~

∫ x2

x1

p (x) dx

]}−1

, (19)

where

p (x) =
√

2me [W − V (x)]1/2 , V (x) = − e2

16πε0x
− eFx. (20)

In order to evaluate the integral in equation (19), let us write

p (x) =
√

2me

(
W +

e2

16πε0x
+ eFx

)1/2

=
√
me (−W )

(
−2− 2

W

e2

16πε0x
− 2

W
eFx

)1/2

(21)
Let us represent

−W =

√
e3F

4πε0

1

y
, x =

−W
2eF

ρ (22)

(it follows that y = ∆A
−W ) and substitute these expressions into (21):

p (x) =

√
me

y

(
e3F

4πε0

)1/4√
f (ρ, y), (23)

where

f (ρ, y) = −2 +
y2

ρ
+ ρ. (24)

Equation (19) assumes the form

D =

{
1 + exp

[
−2i

~

√
me

y

(
e3F

4πε0

)1/4 −W
2eF

∫ 1+
√

1−y2

1−
√

1−y2

√
f (ρ, y)dρ

]}−1

(25)

=

{
1 + exp

[
a
v (y)

y3/2

]}−1

, (26)
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where

a =
4
√

2

3 (4πε0)3/4

(
m2
ee

5

~4F

)1/4

(27)

=
4
√

2

3 (4π8.854187817× 10−12 F m−1)3/4
(28)

×
(

(9.1093897× 10−31 kg)
2

(1.60217733× 10−19 C)
5

(6.5821220× 10−16 eV s)4 V m−1

)1/4(
V m−1

F

)1/4

(29)

= 1. 596 765 526× 103

(
V m−1

F

)1/4

, (30)

v (y) =
−3i

4
√

2

∫ 1+
√

1−y2

1−
√

1−y2

√
f (ρ, y)dρ; (31)

cf. equation (13) of [2].
Equation (16) assumes the form:

j (T, F, φ) =
4πmekTe

h3

{∫ Wl

−Wa

ln
[
1 + exp

(
−W+φ

kT

)]
1 + exp av(y)

y3/2

dW +

∫ ∞
Wl

ln

[
1 + exp

(
−W + φ

kT

)]
dW

}
.

(32)
If the factor (4πε0)−3/4 in equation (27) is dropped, equation (32) will coincide with

equation (19) of [2]. Note that the value 5.15× 109 V cm−1 for m2
ee

5~−4, given in [2] after
equation (19), is in agreement with the above equation (30):

a =
4
√

2

3

(
5.15× 109 V cm−1

F

)1/4

=
4
√

2

3

(
5.15× 109 cm−1

m−1

)1/4(
V m−1

F

)1/4

(33)

= 1. 597× 103

(
V m−1

F

)1/4

(34)

On the other hand, equation (7) of [4] is likely to be erroneous: it would have been
equivalent to (32) if 4 in the numerator of the first multiplier on the rhs of equation (27)
were missing.

4 Function v (y)

Equation (24) may be rewritten as

f (ρ, y) =
(ρ− 1)2 + y2 − 1

ρ
. (35)

For −∞ < W ≤ −∆A, y varies in the range 0 < y ≤ 1 and the integration limits
in equation (31) are real, so the integration can be performed along the real axis. Since
f (ρ, y) vanishes at the integration limits and f (1, y) = y2 − 1 < 0, the integrand is
imaginary in the whole interval. Hence the integral in equation (31) is imaginary and
v (y) real.
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For −∆A ≤ W ≤ Wl = −∆A/
√

2, y varies in the range 1 ≤ y ≤
√

2 and the
integration limits are complex. The integration can be performed along the interval
ρ = 1 + i

√
y2 − 1t, −1 ≤ t ≤ 1. On this interval,

f (ρ, y) =
(
y2 − 1

) 1− t2

1 + i
√
y2 − 1t

. (36)

The argument is odd with respect to t, hence Im
√
f is odd as well and the integral in

equation (31) is once again imaginary and v (y) real.
Equation (16) of [2]:

v (y) =
√

1 + y

[
E

(
1− y
1 + y

)
− yK

(
1− y
1 + y

)]
, (37)

where K = K (m) and E = E (m) are complete elliptic integrals of the first and second
kinds [5]:

K (m) =

∫ π/2

0

(
1−m sin2 θ

)−1/2
dθ, E (m) =

∫ π/2

0

(
1−m sin2 θ

)1/2
dθ. (38)

Equation (37) gives real values for any y > 0. However, functions K (m) and E (m)
are normally tabulated only for 0 ≤ m ≤ 1 (e.g., [5]), hence this equation, while being
convenient for 0 < y ≤ 1, is better be transformed for y ≥ 1. Let us use relations (see file
Properties_and_integrals_of_K(m).tex)

K (−m) =
1√

1 +m
K

(
m

m+ 1

)
, E (−m) =

√
1 +mE

(
m

m+ 1

)
. (39)

Settingm = −1−y
1+y

in these relations and substituting them into equation (37), one obtains

v (y) =

√
y

2

[
2E

(
y − 1

2y

)
− (y + 1)K

(
y − 1

2y

)]
. (40)

This is equation (15) of [2].

5 Range of values of control parameters

The range of variables T and F considered in [6] was 103 K ≤ T ≤ 10 × 103 K, 5 ×
107 V m−1 ≤ F ≤ 2 × 1010 V m−1. In my 2009 calculations for Siemens, the maximum
value of F was 2.2× 109 V m−1, which corresponds to a ≥ 7. 37.

F (V m−1) ∆A (eV) a
5× 107 0.268 19.0
2.2× 109 1. 780 7. 37
2× 1010 5. 366 4. 25
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6 Evaluating the integrals

Let us rewrite equation (32) as

j (T, F, φ)

AemT 2
= I1 + gI2, (41)

where

I1 =

∫ ∞
c

ln
(
1 + e−z

)
dz, c =

φ+Wl

kT
=

1

kT

(
φ− ∆A√

2

)
, (42)

I2 =

∫ Wa/∆A

1/
√

2

ln [1 + exp (gz − b)]
1 + exp [az3/2v (z−1)]

dz, g =
∆A

kT
, b =

φ

kT
. (43)

It is usual to set Wa =∞ ([2] pp. 1468 and 1469).

6.1 Integral I1
The function I1 = I1 (c) may readily be expressed in terms of dilogarithm (Spence’s
integral for n = 2): I1 = L (e−c), where L = L (x) is dilogarithm as defined in [7], p. 67:

L (x) =

∫ x

0

ln (1 + t)

t
dt. (44)

Note that the definition used in [5] and SWP (Maple) is somewhat different: f (x) =
dilog (x) = −

∫ x
1

ln t
t−1
dt, so L (x) = − dilog (1 + x) and I1 (c) = − dilog (1 + e−c).

The approach to evaluation of the function L (x) proposed in [7], p. 67 consists in us-
ing a Chebyshev series in the interval 0 ≤ x ≤ 1 (the relevant Chebyshev coeffi cients are
given) and functional relations for x outside this interval. [Note that a Fortran subroutine
based on this approach is mentioned on the Net:
http://wwwasdoc.web.cern.ch/wwwasdoc/shortwrupsdir/c332/top.html.] In our case, this
procedure would amount to using the Chebyshev series for c ≥ 0 and the functional rela-
tion

I1 (c) =
π2

6
+
c2

2
− I1 (−c) (45)

for c < 0.
Note that the relation (45) may be derived from relations given in [5] as follows. Let

us subtract equation (27.3.5) from (27.3.3):

f (1− x)− f
(

1

x

)
= − lnx ln (1− x) +

π2

6
+

1

2
ln2 x. (46)

Let us now subtract from this equation equation (27.3.5) with x replaced by (1− x):

− f
(

1

x

)
− f

(
1

1− x

)
=
π2

6
+

1

2
ln2 x

1− x. (47)

Setting in this equation x = 1/ (1 + ec), one obtains relation (45). Note also that this
relation may be readily verified in SWP by plotting the function − dilog (1 + e−x) −
dilog (1 + ex)− π2

6
− x2

2
: it is of the order of 10−18.
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However, a much faster and suffi ciently accurate way is to use for c ≥ 0 a rational
approximation (Padé approximant) over the variable x = ec. The two-term expansions of
the function I1 (x) for x→ 1 and x→∞ read, respectively,

I1 =
π2

12
− (ln 2) (x− 1) + . . . , I1 =

1

x
− 1

4x2
+ . . . . (48)

Note that the latter formula is obtained by expanding the logarithm in (44) in powers
of t; it may be obtained also from the expansion (27.7.2) of [5]. The simplest rational
approximation which agrees with these expansions may be written as

I1 =
c1 + c2 (x− 1)

1 + c3 (x− 1) + c2 (x2 − 1)
(49)

with

c1 =
π2

12
, c2 = −1

3

π4 − 144 ln 2

−48 + 5π2
, c3 =

2

3

−6π2 + π4 − 54 ln 2

−48 + 5π2
. (50)

Verification
Definitions
c1 = π2

12

c2 = −1
3
π4−144 ln 2
−48+5π2

c3 = 2
3
−6π2+π4−54 ln 2
−48+5π2

Evaluation: − dilog (1 + e−c)− c1+c2(ec−1)
1+c3(ec−1)+c2(e2c−1)

= 0c+O (c2) ,[
− dilog (1 + e−c)− c1+c2(ec−1)

1+c3(ec−1)+c2(e2c−1)

]
c=− ln ε

= 0ε2 +O (ε3)

Error of this approximant does not exceed 4.6 × 10−5 for all c > 0, which is seen by
plotting the function

c1+c2(ex−1)
1+c3(ex−1)+c2(e2x−1)

− dilog (1 + e−x)
− 1 (51)

in the range 0 ≤ x ≤ 10. (If the plot below does not appear on the screen, try making
any formal change in the plotted item and saving the plot.)

­4e­05

­3e­05

­2e­05

­1e­05

0
2 4 6 8 10x
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For c < 0, equation (45) will be used. In this connection, it is appropriate to rewrite
equation (49) as

I1 (c) =
c1e
−c + c2 (1− e−c)

e−c + c3 (1− e−c) + c2 (ec − e−c) (52)

in order to avoid overflow which may occur in evaluation of the last term of the denom-
inator while evaluating I1 (−c) on the rhs of equation (45) for very high F and low T ,
when −c is very high.
Verification: c1+c2(ec−1)

1+c3(ec−1)+c2(e2c−1)
=

c1e−c+c2(1−e−c)
e−c+c3(1−e−c)+c2(ec−e−c) is true

6.2 Evaluating v (y) by means of Padé approximants

A straightforward numerical evaluation of the function v (y) requires an evaluation of
complete elliptic integrals K (m) and E (m). The latter can be performed, e.g., by means
of the numerical method described in [8] or of polynomial approximations given in [5].
However, simple analytical formulas for v (y) are desirable in order for numerical evalu-
ation of the integral (43) to be fast. Note that since v (y) greatly affects the calculated
current density, derivation of such formulas requires careful treatment [9]. There are sev-
eral works in which simple fit formulas of different degrees of accuracy for the function
v (y) are suggested; e.g., [3, 4, 6, 10—12]. In this work, simple and accurate formulas
are derived by means of Padé approximants with the use of results [12] elucidating the
character of the dependence v (y).
Let us consider first the interval 0 ≤ y ≤ 1. The expansion of function v (y) for y → 0

reads [12]:

v (y) =

[
1−

(
9

8
ln 2 +

3

16

)
w + . . .

]
+ lnw

[
3

16
w + . . .

]
, (53)

where w = y2 and the series in the square brackets involve integer powers of w. The series
expansion for y → 1 can be found with the use of series expansions of functions K (m)
and E (m) in powers of m (e.g., [5]) and reads

v (y) =
3π
√

2

8
(1− y) + . . . (54)

Verification
Definitions
K (m) =

∫ π/2
0

(
1−m sin2 θ

)−1/2
dθ

E (m) =
∫ π/2

0

(
1−m sin2 θ

)1/2
dθ

v (y) =
√

y
2

(
2E
(
y−1
2y

)
− (y + 1)K

(
y−1
2y

))
Evaluation: v (1 + ε) =

(
−3

8
π
√

2
)
ε+O (ε2)

In view of the structure of the expansion (53), it is natural to represent v (y) in the
interval 0 ≤ y ≤ 1 as v (y) = v(1) (w)+v(2) (w) lnw and approximate dependences v(1) (w)
and v(2) (w) by rational functions of w, i.e., to find their Padé approximants. Making use
of the simplest approximants which agree with the expansions (53) and (54), one obtains

v (y) =
1− w

1 + c4w
+

3w lnw

16 (1 + c5w)
(55)
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with

c4 =
9

8
ln 2− 13

16
, c5 =

13− 3c4 − 3π
√

2 (1 + c4)

3π
√

2 (1 + c4)− 16
. (56)

Verification
Definitions
c4 = 9

8
ln 2− 13

16

c5 = 13−3c4−3π
√

2(1+c4)

3π
√

2(1+c4)−16

Evaluation: 1−w
1+c4w

+ 3w lnw
16(1+c5w)

−
(
1−

(
9
8

ln 2 + 3
16

)
w
)
− lnw

(
3
16
w
)

=
[

1−w
1+c4w

−
(
1−

(
9
8

ln 2 + 3
16

)
w
)]

+
[

3w
16(1+c5w)

−
(

3
16
w
)]

lnw = [O (w2)]+[O (w2)] lnw,[
1−w

1+c4w
+ 3w lnw

16(1+c5w)
− 3π

√
2

8
(−ε)

]
w=(1+ε)2

= 0ε+O (ε2)

The error of the approximate formula (55) does not exceed 3.7× 10−4 over the whole
range 0 ≤ y ≤ 1, which is significantly smaller than that of previously reported simple
formulas; an unsurprising result reflecting the power of Padé approximants. The next
best is the formula [3, 11, 12], which, while being simple and elegant, is by happy accident
close to the best fit [3] and possesses the maximum error of 3.3 × 10−3. It should be
stressed that the approximate formula (55) ensures correct asymptotic behavior of the
function v (y) for both y → 0 and y → 1, the latter being important for deriving a
smooth approximation on the whole interval 0 ≤ y ≤

√
2 which is needed for evaluation

of thermo-field emission.
Let us consider now the interval 1 ≤ y ≤

√
2. A series expansion of v (y) for y →

√
2

reads

v (y) =
1

21/4

[
2E (m0)−

(√
2 + 1

)
K (m0)

]
− 3

25/4
K (m0)

(
y −
√

2
)

− 3

213/4
[2E (m0)−K (m0)]

(
y −
√

2
)2

+ . . . , (57)

wherem0 = 2−
√

2
4
. (Verification not possible.) The simplest approximant that agrees with

the expansions (54) and (57) may be written as

v (y) = − 3π

25/2

(y − 1) + c6 (y − 1)2

1 + c7 (y − 1) + c8 (y − 1)2 (58)

with coeffi cients c6, c7, and c8 being expressed in terms of K (m0) and E (m0) (these
expressions are skipped for brevity) and having numerical values c6 = 0.514 706 54, c7 =
0.202 328 90, and c8 = −0.013 410 07. The error of this approximant does not exceed
4.8 × 10−6 over the whole range 1 ≤ y ≤

√
2, which again is significantly smaller than

that of previously reported simple formulas.
Verification
Definitions
m0 = 2−

√
2

4

c9 = 1
2
2
3
4

(
2E (m0)−

(√
2 + 1

)
K (m0)

)
c10 = −3

4
2
3
4K (m0)

c11 = −3
8

4√2√
2−1

((
−2 +

√
2
)
K (m0) + 2

√
2√

2+1
E (m0)

)
c6 = −1

3

3c11πc9−192c39−6πc210−6πc210
√

2+3π
√

2c11c9−136c39
√

2

(c11c9−2c210+2c9c10+2c9c10
√

2)π
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c7 = −1
8

−32c210−32c210
√

2+3c11π
√

2+16c11c9+16c11c9
√

2+12πc10+6πc10
√

2+144c9c10+96c9c10
√

2

c11c9−2c210+2c9c10+2c9c10
√

2

c8 = 1
8

224c9c10+6c11π−272c29+24c11c9−48c210+16c11c9
√

2−32c210
√

2+160c9c10
√

2+3c11π
√

2−192c29
√

2

c11c9−2c210+2c9c10+2c9c10
√

2

Evaluation:
[
− 3π

25/2
(y−1)+c6(y−1)2

1+c7(y−1)+c8(y−1)2
− 3π

√
2

8
(1− y)

]
y=1+ε

= O (ε2) ,[
− 3π

25/2
(y−1)+c6(y−1)2

1+c7(y−1)+c8(y−1)2
−
(

1
21/4

(
2E (m0)−

(√
2 + 1

)
K (m0)

)
− 3

25/4
K (m0)

(
y −
√

2
)
− 3

213/4
(2E (m0)−K (m0))

(
y −
√

2
)2
)]

y=
√

2+ε

= 0 + 0ε+ 0ε2 +O (ε3)

6.3 Integral I2
Integral (43) cannot be expressed in terms of conventional special functions. On the other
hand, I2 is governed by three dimensionless parameters (a, b, g), so it is hardly possible
to devise an accurate uniformly valid approximate formula. Therefore, the integral needs
to be evaluated numerically.
Under conditions of practical interest, one or more parameters governing the integrand

in equation (43) are large and the integrand represents a multi-scale function. Therefore,
an effi cient numerical evaluation of the integral must include an adaptive choice of the
numerical grid. A suitable method is Romberg integration [8]. First, let us transform the
integral to the integration variable y = 1/z,

I2 =

∫ √2

0

r1r2

y2
dy, (59)

where

r1 = ln

[
1 + exp

(
g

y
− b
)]

, r2 =

[
1 + exp

av (y)

y3/2

]−1.

. (60)

In order to avoid overflow which may occur in evaluation of the exponential functions
for small y, it is advisable to rewrite equation (60) as

r1 = ln

[
1 + exp

(
b− g

y

)]
−
(
b− g

y

)
, r2 =

exp
[
−av(y)

y3/2

]
exp

[
−av(y)

y3/2

]
+ 1

. (61)

In cases where exp
(
g
y
− b
)
is very small, the use of the first expression in equation (61)

causes accumulation of errors and the Romberg integration (or, more precisely, Richard-
son’s deferred approach to the limit) may fail. The same happens if the first expression
in equation (60) is used; in particular, the argument of the logarithm evaluated by the

code will be exactly 1 and the logarithm exactly 0 for exp
(
g
y
− b
)
suffi ciently small

while still above the underflow limit. Therefore, in cases where exp
(
g
y
− b
)
is small, say,

smaller than 0.01, the quantity r1 should be evaluated by means of a series in powers
of exp

(
g
y
− b
)
which is obtained by expanding the logarithm in the first expression in

equation (60).
In this framework, the Romberg integration in its standard form [8] works nicely for

(at least) 10 V m−1 ≤ F ≤ 1011 V m−1 and 300 K ≤ T ≤ 6000 K.
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7 Computations with SWP (Maple)

Evaluation by means of SWP gives∫ π/2

0

(
1−m sin2 θ

)−1/2
dθ = EllipticK

(√
m
)
,

∫ π/2

0

(
1−m sin2 θ

)1/2
dθ = EllipticE

(√
m
)
,

(62)
but SWP does not understand designations EllipticE and EllipticK (it considers EllipticK (m)
to be a product!!!) However, it can work with the integrals on the lhs of equation (62).
In particular, one can define

v1 (y) =
√

1 + y

(∫ π/2

0

(
1− 1− y

1 + y
sin2 θ

)1/2

dθ − y
∫ π/2

0

(
1− 1− y

1 + y
sin2 θ

)−1/2

dθ

)
,

(63)

v2 (y) = −
√
y

2

(
(y + 1)

∫ π/2

0

(
1− y − 1

2y
sin2 θ

)−1/2

dθ − 2

∫ π/2

0

(
1− y − 1

2y
sin2 θ

)1/2

dθ

)
,

(64)
(SWP gives equal numerical values for these functions). These definitions can be used for
evaluation but, unfortunately, not for plotting.
Quantity on the rhs of definition (63) can be plotted. However, these plots are capri-

cious, as well as, apparently, any other plots in SWP5.5. For example, the plot below
normally does not appear on the screen immediately after it has been open. You should
make any formal change in any of the plotted items and save the plot, after which it will
appear.

8 Derivation of (57) and (58)

Definitions:
K (m) =

∫ π/2
0

(
1−m sin2 θ

)−1/2
dθ

E (m) =
∫ π/2

0

(
1−m sin2 θ

)1/2
dθ

v (y) =
√

y
2

(
2E
(
y−1
2y

)
− (y + 1)K

(
y−1
2y

))
Derivatives:
dv(y)
dy

+ 3
√

2y
4
K
(
y−1
2y

)
(two times Simplify) : 0 ⇐⇒ dv(y)

dy
= −3

√
2y

4
K
(
y−1
2y

)
d
dy

(
−3
√

2y
4
K
(
y−1
2y

))
+ 3

8

√
2√

y(y−1)

(
(y − 2)K

(
y−1
2y

)
+ 2y

(y+1)
E
(
y−1
2y

))
(two times Sim-

plify) : 0 ⇐⇒ d2v(y)
dy2

= −3
8

√
2√

y(y−1)

[
(y − 2)K

(
y−1
2y

)
+ 2y

(y+1)
E
(
y−1
2y

)]
Values for y =

√
2:

m0 =
[
y−1
2y

]
y=
√

2
= 2−

√
2

4

Definition:
m0 = 2−

√
2

4

[v (y)]y=
√

2 − 1
2
2
3
4

(
2E (m0)−

(√
2 + 1

)
K (m0)

) Simplify
= 0

⇐⇒ [v (y)]y=
√

2 = 1
2
2
3
4

(
2E (m0)−

(√
2 + 1

)
K (m0)

)
= c9[

−3
√

2y
4
K
(
y−1
2y

)]
y=
√

2
+ 3

4
2
3
4K (m0)

Simplify
= 0 ⇐⇒

[
dv(y)
dy

]
y=
√

2
= −3

4
2
3
4K (m0) = c10

11



[
−3

8

√
2√

y(y−1)

(
(y − 2)K

(
y−1
2y

)
+ 2y

(y+1)
E
(
y−1
2y

))]
y=
√

2
+3

8

4√2√
2−1

((
−2 +

√
2
)
K (m0) + 2

√
2√

2+1
E (m0)

)
Simplify

= 0 ⇐⇒[
d2v(y)
dy2

]
y=
√

2
= −3

8

4√2√
2−1

[(
−2 +

√
2
)
K (m0) + 2

√
2√

2+1
E (m0)

]
= c11

Approximant: v (y) = − 3π
25/2

(y−1)+c6(y−1)2

1+c7(y−1)+c8(y−1)2

v =
[
− 3π

25/2
(y−1)+c6(y−1)2

1+c7(y−1)+c8(y−1)2

]
y=
√

2+ε
=

(
−3

8
π
√

2
√

2−1+c6(
√

2−1)
2

1+c7(
√

2−1)+c8(
√

2−1)
2

)
+

(
−3

8

π
√

2(1+c6(2
√

2−2))−π
√

2
−
√
2+1−3c6+2c6

√
2

−1−c7
√
2+c7−3c8+2c8

√
2
(c7+c8(2

√
2−2))

1+c7(
√

2−1)+c8(
√

2−1)
2

)

ε+

(
−3

8

π
√

2c6−π
√

2
−
√
2+1−3c6+2c6

√
2

−1−c7
√
2+c7−3c8+2c8

√
2
c8−
√

2π
1−3c8+2c8

√
2+2c6

√
2+3c6c7−2c6

√
2c7−2c6

(−1−c7
√
2+c7−3c8+2c8

√
2)2

(c7+c8(2
√

2−2))

1+c7(
√

2−1)+c8(
√

2−1)
2

)
ε2+

O (ε3) (
−3

8
π
√

2
√

2−1+c6(
√

2−1)
2

1+c7(
√

2−1)+c8(
√

2−1)
2

)
= c9(

−3
8

π
√

2(1+c6(2
√

2−2))−π
√

2
−
√
2+1−3c6+2c6

√
2

−1−c7
√
2+c7−3c8+2c8

√
2
(c7+c8(2

√
2−2))

1+c7(
√

2−1)+c8(
√

2−1)
2

)
= c10(

−3
8

π
√

2c6−π
√

2
−
√
2+1−3c6+2c6

√
2

−1−c7
√
2+c7−3c8+2c8

√
2
c8−
√

2π
1−3c8+2c8

√
2+2c6

√
2+3c6c7−2c6

√
2c7−2c6

(−1−c7
√
2+c7−3c8+2c8

√
2)2

(c7+c8(2
√

2−2))

1+c7(
√

2−1)+c8(
√

2−1)
2

)
= c11

2

,

Solution is:
{
c6 = −1

3

3c11πc9−192c39−6πc210−6πc210
√

2+3π
√

2c11c9−136c39
√

2

(c11c9−2c210+2c9c10+2c9c10
√

2)π
, c7 = −1

8

−32c210−32c210
√

2+3c11π
√

2+16c11c9+16c11c9
√

2+12πc10+6πc10
√

2+144c9c10+96c9c10
√

2

c11c9−2c210+2c9c10+2c9c10
√

2
, c8 = 1

8

224c9c10+6c11π−272c29+24c11c9−48c210+16c11c9
√

2−32c210
√

2+160c9c10
√

2+3c11π
√

2−192c29
√

2

c11c9−2c210+2c9c10+2c9c10
√

2

}
Definitions
c9 = 1

2
2
3
4

(
2E (m0)−

(√
2 + 1

)
K (m0)

)
c10 = −3

4
2
3
4K (m0)

c11 = −3
8

4√2√
2−1

((
−2 +

√
2
)
K (m0) + 2

√
2√

2+1
E (m0)

)
Evaluate numerically: c6 = 0.514 706 537 019 658 0, c7 = 0.202 328 904 291 161 5,
c8 = −1. 341 007 278 577 611× 10−2

Definitions:
c6 = 0.514 706 54
c7 = 0.202 328 90
c8 = −0.013 410 07
The relative errors have been estimated by magnifying the following graph, where the

functions
1−x2
1+c4x

2+
3x2 ln(x2)
16(1+c5x2)

√
x+1

(∫ 1
2π

0

√
1−−x+1

x+1
sin2 θ dθ−x

∫ 1
2π

0
1√

1−−x+1x+1 sin2 θ
dθ

) − 1 and

− 3π

25/2
(x−1)+c6(x−1)

2

1+c7(x−1)+c8(x−1)2

√
x+1

(∫ 1
2π

0

√
1−−x+1

x+1
sin2 θ dθ−x

∫ 1
2π

0
1√

1−−x+1x+1 sin2 θ
dθ

) − 1 are plotted:
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0.0001

0.00015

0.0002
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0.2 0.4 0.6 0.8 1 1.2 1.4x

Error of Pade approximants (55) and (58).

9 Formulas for v(y) from preceding publica-
tions

9.1 Hantzsche 1982

[6], equation (3e):

v (y) =

{
1− y2 (0.9673− 0.3750 ln y)− 0.0327y4 for y ≤ 1

−1.3110y3/2 + 0.8986y1/2 + 0.4936y−1/2 − 0.0812y−3/2 for y ≥ 1
. (65)

According to [6], the relative error of these formulas ≤ 1.4% in the whole range of y
values. My evaluation of this formula confirms this estimate. This is seen from the
following graphs, where of the functions 1−x2(0.9673−0.3750 lnx)−0.0327x4

√
x+1

(∫ 1
2π

0

√
1−−x+1

x+1
sin2 θ dθ−x

∫ 1
2π

0
1√

1−−x+1x+1 sin2 θ
dθ

)−1

and −1.3110x3/2+0.8986x1/2+0.4936x−1/2−0.0812x−3/2

√
x+1

(∫ 1
2π

0

√
1−−x+1

x+1
sin2 θ dθ−x

∫ 1
2π

0
1√

1−−x+1x+1 sin2 θ
dθ

) , respectively, are plotted:

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.2 0.4 0.6 0.8x
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9.2 Forbes 2006

A simple, elegant, and a bit more accurate formula for the range 0 ≤ y ≤ 1 was proposed
in [3] (see also [11, 12]):

v (y) = 1− y2 +
1

3
y2 ln y (66)

According to [3], this formula, when assessed over the whole range 0 ≤ y ≤ 1, has absolute
error < 0.33%. My evaluation of this formula confirms this estimate.
Formula (66) can be obtained from (55) by setting c4 = c5 = 0 and replacing the

numerical coeffi cient 3/16 in the second term by a slightly smaller coeffi cient 1/6. Since
absolute values of the coeffi cients c4 and c5 are rather small, c4 ≈ −3.270 × 10−2 and
c5 ≈ −6.612× 10−2, the formulas are not dramatically different.
All the above formulas give v (1) = 0, which is the exact value. The derivatives at

y = 1 are

dv

dy
(1− 0)

∣∣∣∣
Eq. (65)

= −1. 690 4,
dv

dy
(1− 0)

∣∣∣∣
Eq. (66)

= −5

3
,

dv

dy
(1 + 0)

∣∣∣∣
Eq. (65)

= −1. 642 2

(67)
The discontinuity in the derivative at y = 1 is around 3% if equation (65) is used for both
y ≤ 1 and y ≥ 1 and around 1.5% if equation (65) is used for y ≥ 1 and equation (66) is
used for y ≤ 1.

9.3 Jensen 2008

Formula from [13] (last para of Appendix A): v(y) = 0.93869 − y2. The error at y = 1
exceeds 6%.

9.4 Jensen 2007

Eq. (18) of [14]:

v(y) =
3

8
y2 ln y +

(
1− y2

) (
1 + y2

(
A1 − A2y

2 + A3y
4
))

(68)

Eq. (17) of [14]:

A1 =
9897

16384
π
√

2− 85

32
, A2 =

5145

8192
π
√

2− 89

32
, A3 = 0.0021112 (69)
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There is an error in the third equation (17) since 15
16384

π
√

2 − 15
16

= −0.933 432 419
185 035 7 6= 0.0021112. Apparently, A3 = 0.0021112 is correct.
Verification of derivative at y = 1:

[
3
8
y2 ln y + (1− y2) (1 + y2 (A1 − A2y

2 + A3y
4))
]
y=1+ε

1

− 3π
√
2

8

=

1. 000 000 038 105 277ε+O (ε2)
Verification of expansion for small y:
(1− y2) (1 + y2 (A1 − A2y

2 + A3y
4)) = 1− 0.972 460 178 286 538 7y2 +O (y4)

0.972 460 178 286 538 7
9
8

ln 2+ 3
16

= 1. 005 344 412 809 845

Plot
3
8
x2 lnx+(1−x2)(1+x2(A1−A2x2+A3x4))

√
x+1

(∫ 1
2π

0

√
1−−x+1

x+1
sin2 θ dθ−x

∫ 1
2π

0
1√

1−−x+1x+1 sin2 θ
dθ

) − 1:

­0.00025

­0.0002

­0.00015

­0.0001

­5e­05

0
0.2 0.4 0.6 0.8x

10 NOT USED
v(y)

y3/2
on the interval 1 ≤ y ≤

√
2 to the accuracy of 6% coincides with the first term of its

series expansion for z → 0, which is −3
√

2πz
8
. Plot −3

√
2πx

8(1−x)3/2v((1−x)−1)
− 1.
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